

In Reply Refer to:

2022-0043398

United States Department of the Interior

FISH AND WILDLIFE SERVICE

San Francisco Bay-Delta Fish and Wildlife Office 650 Capitol Mall, Suite 8-300 Sacramento, California 95814

Ms. Alicia Kirchner Chief, Planning Division Sacramento District U. S. Army Corps of Engineers 1325 J Street Sacramento, California 95814

Subject: Supplemental Fish and Wildlife Coordination Act Report for the Lower San Joaquin River Feasibility Study - Segment TS_30_L Habitat Evaluation Procedures

Dear Ms. Kirchner:

Per our Scope of Work for FY 2022, please find enclosed the subject report.

If you have any questions, please contact Steven Schoenberg of my staff at (916) 930-5672, or by email at Steven_Schoenberg@fws.gov.

Sincerely,

Daniel Welsh Deputy Field Supervisor

Enclosure

cc:

Dave Fluetsch, Corps of Engineers, Sacramento, CA Lorena Guerrero, Corps of Engineers, Sacramento, CA Howard Brown, National Marine Fisheries Service, Sacramento, CA Jeff Drongesen, Region II, California Department of Fish and Wildlife, Sacramento, CA Jim Starr, Region III, California Department of Fish and Wildlife, Stockton, CA Ruth Darling, Department of Water Resources, Sacramento, CA Juan Niera, San Joaquin Area Flood Control Agency, Stockton, CA Chris Elias, San Joaquin Area Flood Control Agency, Stockton, CA

SUPPLEMENTAL FISH AND WILDLIFE COORDINATION ACT REPORT FOR THE

LOWER SAN JOAQUIN RIVER FEASIBILITY STUDY:

SEGMENT TS_30_L HABITAT EVALUATION PROCEDURES

PREPARED BY:

Steven Schoenberg, Senior Fish and Wildlife Biologist U.S. Fish and Wildlife Service Watershed Planning Division San Francisco Bay-Delta Fish and Wildlife Office Sacramento, California

PREPARED FOR:

U.S. Army Corps of Engineers Sacramento District Sacramento, California

November 2022

TABLE OF CONTENTS

INTRODUCTION
BACKGROUND AND COORDINATION HISTORY
HABITAT EVALUATION PROCEDURES
APPLICATION AND LIMITATIONS
MODEL SELECTION
STUDY ACTIVITIES
ASSUMPTIONS
RESULTS
ANALYSIS
PRELIMINARY MITIGATION RECOMMENDATIONS10
GENERAL RECOMMENDATIONS12
REFERENCES14

TABLES

APPENDICES

APPENDIX A: Excel spreadsheet APPENDIX B: Models APPENDIX C: Field data sheets APPENDIX D: Plates

INTRODUCTION

This report is a supplement to the Fish and Wildlife Service's (Service) Fish and Wildlife Coordination Act (FWCA) detailed report (hereafter, "2016 FWCA") on the U.S. Army Corps of Engineers (Corps) Lower San Joaquin River Feasibility Study (LSJRFS) (FWS 2016). The purpose of this supplemental report is to present the results of a habitat evaluation of one reach segment within that study known as TS_30_L. We also provide preliminary recommendations for the siting of mitigation for the impacts of construction of that reach.

BACKGROUND AND COORDINATION HISTORY

The preferred alternative for the proposed project (alternative 7a) involves some 24 miles of levee improvements, of which TS_30_L is part, and two tidal gates in an overall effort to protect greater Stockton from flood events. The 2016 FWCA did not include a formal habitat evaluation of any of the project elements because of limited information, and funding and schedule constraints within the Corps' "SMART" planning guidance (Corps 2015a). Therefore, we were limited to a Corps-provided desktop analysis using aerial images and their estimates of impact, and our own observations during several hours of site visits to the project element locations. The 2015 draft Integrated Feasibility Report/Final Environmental Impact Statement/Report (FS/FEIS/R) stated that a full mitigation plan, including field surveys and habitat evaluations as appropriate, would be done during the Pre-construction Engineering and Design (PED) phase (Corps 2015b).

The Corps issued a final FS/FEIS/R for the project in 2018 (Corps 2018). There are significant differences from the project as described in the final environmental document (Corps 2018). The 2018 FS/FEIS/R states that mitigation bank credits would be obtained to offset impacts of the project; however, such credits are not currently nor foreseeably available. In response to our 2016 FWCA, the Corps also committed in its 2018 FS/FEIS/R to evaluate other on and near impact site opportunities for mitigation, including some we had identified (FWS 2016). The project elements that would incorporate mitigation for impacts included one setback levee, within Fourteenmile Slough, which would incorporate mitigation in the forms of some riparian and Shaded Riverine Aquatic (SRA, a type of riparian cover adjacent to water) cover types, and was also intended to accept elderberry transplants (host plant for the federally listed Valley Elderberry Longhorn Beetle, or VELB) from other parts of the project. However, constructing other reaches like TS_30_L in advance of the Fourteenmile Slough element creates the additional need to develop mitigation elsewhere.

The Feasibility Study entered the PED phase around October 2019 and the Service was funded in late 2020 to resume FWCA coordination activities. The Corps had selected the segment TS_30_L as the first construction element, a 5,900 foot long stretch of levee bordered at the south by March Lane and to the north by the Fourteenmile Slough levee near White Slough. In environmental documents and our 2016 FWCA report, this segment is one of several in the Delta Front work element, which includes Shima Tract, Fivemile, Tenmile, and Fourteenmile Slough, with "TS" referring to the Tenmile Slough levee. The work at TS_30_L originally involved the installation of cutoff walls, slope reshaping, and application of west facing rock protection.

Project refinements to TS_30_L have since been identified which would likely increase impact beyond the estimates in the environmental documents, including a 20-foot westward levee prism shift which is needed to allow room for a patrol road to inspect the land (east) side of the levee. This would extend water side work (rock revetment, patrol road, levee reconstruction), in most sections, all the way to the irrigation ditch (the westward extent of the natural habitat). Additionally, at the time of the 2018 FS/FEIS/R, there was consideration of applying for a variance which would permit some vegetation on the lower slopes of levees. During PED, however, the Corps determined it would not seek a vegetation variance, but might consider a design deviation based on risk assessment which could permit some vegetation growth. Whether or not a design deviation is approved, nearly all vegetation within the impact footprint area would be removed initially due to earthwork.

A more detailed site visit to the TS_30_L impact area was conducted in March 2021. Among the more notable observations was the apparent high wildlife use by songbirds and raptors, elderberry bushes, and mixture of habitat elements (trees, snags, shrubs, herbaceous areas, native trees, exotics). Persistence of the habitat appeared to be a consequence of both proximity to an irrigation drainage ditch, and apparent low maintenance at least on the lower levee slope. Several potential areas for mitigation were discussed and/or looked at briefly in early 2021 as well.

We provided a site visit report in March 2021 with our findings and, after further review of the project history, we also provided a May 2021 guidance memo with our preliminary recommendations for mitigation and imminent construction as it pertains to TS_30_L. In brief, we concluded no path forward to 2021 construction because of unresolved matters of project impacts without mitigation agreed and in place prior to project impacts, unevaluated changes to the project, elderberry impacts which required reconsultation, and the need to evaluate on/near site mitigation options. Our primary recommendation, if the Corps intended to proceed with TS_30_L construction in the near term, was to plan a mitigation area in a corridor adjacent to the affected habitat.

Beginning late August 2021, the Service participated in a number of calls with the Corps related to the sequencing of the project, various mitigation locations and ratios, and technical assistance under the Endangered Species Act (ESA) regarding federally listed species. The Corps planned to proceed with the project beginning with vegetation removal in early 2022 in advance of other construction. To quantify the baseline habitat value of the impacted areas before these anticipated impacts, the Corps communicated to the Service the need to conduct a habitat evaluation of the impact area of TS_30_L. That habitat evaluation, based on field work conducted in December 2021, is the focus of this supplemental report. At the time of the writing of this report, vegetation has not been impacted because the project has not yet begun. On July 26, 2022, the Service attended a site visit to view additional potential mitigation sites. To better assist the Corps' mitigation planning, this report also includes an initial evaluation and prioritization of these mitigation sites based on our observations and best professional opinion.

HABITAT EVALUATION PROCEDURES

Habitat Evaluation Procedures, or "HEP", is an accounting methodology developed by the Service and other agencies to quantify habitat value of a particular area of habitat to selected wildlife species or communities associated with that habitat (FWS 1980a, 1980b, 1981). It is based on models which calculate an index value between 0.0 and 1.0, the Habitat Suitability Index (HSI), that is used to weight habitat area. HSI models consist of a set of habitat variables which are measured or estimated (usually denoted V1, V2... etc.) that are considered important life requisites to the particular wildlife species or community. These variables, or Vs, are converted to Suitability Indices (SIs) using graphical relationships or best-fit word descriptions provided in the model that assign an index value to a measured or assumed variable quantity. The SIs are then combined using equations to obtain the HSI. A series of HSIs are estimated for several points in time in the future (called Target Years, or TYs), over the life of the project; these sets of HSIs for the target years are commonly referred to as "futures". For these futures, the HSI is multiplied by the habitat area to obtain habitat units, which are summed and averaged over the life of the project (Average Annualized Habitat Units, or AAHUs). This routine can be applied to both an impacted project site and a proposed mitigation site. AAHUs are used as the metric to compare habitat values of the future without the project to the future with the project.

APPLICATION AND LIMITATIONS

HEP is a tool that can be useful in assessing the need and adequacy of mitigation for impacts of an action but it has limits and assumptions. AAHUs for a mitigation site can be compared to that of an impact site to estimate the area of mitigation necessary to provide at least the same habitat value. HEP does not normally include and therefore does not evaluate habitat values within a landscape context: corridor values that permit the movement of wildlife across a landscape, the distribution and rarity of habitat across a region, actual use by wildlife, or the interaction between habitats, agriculture or urban components. It is often a coarse evaluation, subject to error in the measurements themselves and variation in the way wildlife resources use habitat in different regions of the Country. HEP is also not used for listed species. Instead, mitigation for effects on listed species is determined separately during ESA consultation, often using guidance documents and similar treatment as in other consultations for the individual species. Listed species guidance can vary, and may involve the use of standardized mitigation ratios and other factors.

MODEL SELECTION

The process of model selection for this HEP study involved preliminary assessment of the habitat during a site visit, a review of available models, and communication with a HEP team that included Service and Corps staff. Models were selected that we considered to best represent the values of the affected habitat and mitigation, and the majority of the habitat components. A site visit was first conducted on March 9, 2021. Vegetation had just started to leaf out, however, the general habitat characteristics could be observed. There was a mix of woody vegetation dominated by dense shrub species, particularly willows, blackberry, and buttonbush, together with some larger and taller willows, other taller trees such as oaks and some non-natives (walnuts, pecan) and patches of rose and elderberry. Snags (larger dead limbs or entire dead

trees) were evident throughout the site. The woody vegetation was interspersed with tall herbaceous plants, especially thistle. Wetland patches were also seen in association with what appeared to be an agricultural drainage ditch at or slightly beyond the toe of slope, which was maintained on the west side and had water (or evidence of recent water). At this time, and in subsequent visits to the site, a variety of avian wildlife were noted such as hummingbirds, sparrows, mockingbirds, raptors, quail, and others. The habitat mix varied over the length of TS_30_L, with areas dominated by shrubs, trees, or herbaceous plants, depending on exact location.

On the basis of these initial observations, we reviewed available models and selected a suite of five HEP models that would complement one another and best represent the values provided by the existing habitat. These included published models, modifications to published models, and in-house unpublished models locally developed and applied to evaluations of other Corps projects. A HEP "package", consisting of the models, summary of methods, and basic rationale, was provided to the Corps prior to field sampling. The Corps noted prior to field sampling, per their current guidance, that unpublished and modified models would need to undergo a certification process, which involves review by the Corps' Engineering Research and Development Center (ERDC) and communication with Service staff. However, given the field conditions (late fall), the Service and Corps mutually agreed to proceed and complete field sampling, in advance of completion of the certification process. The Service responded to all ERDC requests for documentation and justification of models used to the extent these were available. The Corps notified the Service that certification was forthcoming, and to proceed at least for use in this specific application (HEP evaluation of TS_30_L) (August 4, 2022, email from David Fluetsch, Sacramento District). The selected models and rationales are as follows:

Yellow Warbler (Schroeder 1982): The preferred habitat of this species is a deciduous riparian assemblage of hydrophytic species such as willows and cottonwoods. It is a summer resident in similar habitat in the Central Valley of California. This model emphasizes the lower and middle canopy and the habitat preference of this species for hydrophytic shrubs. The Service developed and validated this model for use throughout this species' range; however, the original model is derived from early work in the eastern United States which acknowledged forest use as occasional only. That original model had three variables, all associated with shrubs and/or lower canopy (percent deciduous crown cover, average shrub height, and percent hydrophytic shrubs). We used a modification of this published model that we had also applied to other local Corps Federal projects since 1998. This modification added a fourth variable for tall trees, consistent with forage beats by this species in the West ranging up to 40 feet above the ground, presence of trees in portions of the project area, and expected effect of the project on this combination of tall trees with a shrub understory. During the Corps' certification process, we researched and responded to Corps questions to justify this modification, noting that partial use of the higher canopy by this species had been well documented in the West.

Riparian Songbird Guild (Roberts et al. 1986): This is an unpublished model originally developed for application to forested or scrub-shrub wetlands in Humboldt Bay, and was the original model used to evaluate riparian forest habitat in the 1999 and 2009 HEPs of the Corps' Napa Creek project (FWS 2009). It is intended to apply to a relatively broad range of bird species (mostly in the order Passeriformes, but also associated species in the order Piciformes)

that use plants, snags or associated insects for food, or use the plants and snags for nesting. Variables include shrub and tree cover, tree height, canopy layering category, snags, and overall woody cover. The variables focus on somewhat shorter canopy elements. This model has the smallest snag dimension (4 inches) of the three models with snag variables used for TS_30_L. This was deemed appropriate because of the presence of woodpeckers and birds at TS_30_L, and the small snags present that would be impacted by the project.

Riparian Forest Cover Type (DeHaven 2001): This unpublished model was developed by the Service's Sacramento Fish and Wildlife Office originally for Corps bank protection actions along the lower Sacramento River, and was later modified for use in the Corps' Llagas Creek project. It is a generalist model, intended to quantify values to a range of bird and mammals that could utilize this habitat. It combines vegetation parameters such as height, closure, stand width, understory, and species number, and has discounting factors for non-native dominance and distance from water. This model is sensitive to structural diversity of habitats and narrowing of corridors by project actions. It was considered appropriate for TS_30_L in light of the combination and variation in tree and shrub cover, and stand width, at this location.

Downy Woodpecker (Schroeder 1983): The species' habitat covered by this published model associates primarily with older soft wood riparian species like willow and cottonwood in lowland stream bottoms. Older trees are not common in TS_30_L, but are present and considered a significant component which would be affected by the project. The variables are snags (6 inch minimum; required for value) and basal area at breast height, the latter of which can only be coarsely estimated in thick young stands such as TS_30_L. Nevertheless, this model was included in this HEP analysis because it reflected the values, albeit limited, of this older vegetation component, the presence of snags at TS_30_L, and the observation of cavity dwellers such as woodpeckers and owls at this site.

Hairy Woodpecker (Souza 1987): The habitat represented by this published model is also older, larger, trees in a variety of forest types and densities. Measurements include mean tree diameter at breast height (used in two suitability indices), canopy cover, and snag count. It has an even larger snag dimension criterion (10 inches) than other models in this HEP study. It was included for the HEP at TS_30_L as an alternative to the Downy Woodpecker model. This model emphasizes larger trees and snags, but without an absolute requirement for snags to yield value in a plot. Larger trees and snags were present, but infrequent and patchy, at this location.

STUDY ACTIVITIES

The HEP evaluation for TS_30_L involved the following sequence of activities:

a) *Field Sampling*: Sampling was conducted on December 2, 3, 7, and 8, 2021. The Service author of this report was present on all days (Steven Schoenberg, Senior Biologist), and was assisted by one or two Corps staff each day (Savannah Fahning, Jessica Agajan, Steve McLemore, Miranda Doutch, or Dave Fluetsch). Conditions were considered fair due to some leaf drop and shedding of terminal branches, but acceptable for the purposes of the study. The suboptimal field conditions mean that there is some potential underestimate of features such as woody vegetation height and cover that could result in an underestimate of baseline value, but

not to a major degree. The measurement requirements for the selected models included both transect and plot based parameters.

The plot size and extent of effort for each parameter was tailored by the Service staff's best judgement to complete the sampling in a reasonable time, given the size of the site, the need to assess 20 variables in the five models, limited remaining season due to ongoing leaf and branch shedding, and short days at the time of the field work. The TS_30_L site is also typified by the presence of a dense, often thorned, lower shrub layer, and patchy dense woody stems. The limited time available to meet these study needs and difficulty moving within a site with these characteristics necessitated a coarse, visual estimation of some variables. Detailed measurement protocols for each variable are provided in Appendix A, TAB: Models.

Taking these factors into consideration, a plot length of 300 feet was selected, which could be sampled within study time constraints while still capturing the variation in habitat suitability over the length of the site. Two perpendicular transects were set up in each plot. Transect position within a plot was decided by selecting two single digits from a random number table (1-9), which were each multiplied by a tenth of the total plot length to determine the locations of the perpendicular transects. After a plot and its transects were set up, a waypoint location of the beginning (south end) of each plot was recorded on a GPS device. When all sampling was completed, the spatial data for the plot boundaries were downloaded from the GPS device using the software Garmin Basecamp, and converted to a shapefile (Appendix D, Plate 1). Three photographs were taken on each plot, one facing north from the beginning of each plot, and west across each of the two perpendicular transects. Measurements were recorded on paper data sheets, one per plot (Appendix C). All raw data were entered into a multitab Excel spreadsheet file, designed to convert the data into SIs and HSIs for each model (Appendix A). In a few rare instances of missing data, all noted in Appendix C, either reference photos and/or similar data from other models were used to develop a best estimate of values for those variables.

b) *Data Reduction*: Measurements from the two transects for each plot were averaged to obtain plot specific values for the transect-based measurements and, with the values for the other full plot measurements, were used to obtain a single plot-specific variable for each SI and then, using the model equations, plot specific HSIs for each model. These plot-specific HSIs were averaged to determine a reach-wide HSI for each model. This manner of calculation, with plot-specific HSIs used to obtain a reach-wide average, is typical in HEP studies. Some test calculations were done by assigning a single, reach-wide average SI for snag density and basal area to each of the plots, to see if variation between plots in these particular variables might bias the reach-wide HSI. However, these test calculations showed that the reach-wide average HSI would be the same with either calculation routine (Appendix A, TAB: HSIdatacalcs, lines: 224-225, 282), so this alternative routine was not used, and is not discussed further in this report.

c) *Futures*: Initial, solely HEP-based, estimates of mitigation needs were made by developing mitigation site futures and calculating and comparing changes in habitat value (AAHUs) for the Corps-determined 13.88 acre impact footprint and a hypothetical 10 acre (ac) restoration site (Appendix A, TAB: futures). The ratio of losses at the impact site to gains at the restoration site, adjusted by area, is the theoretical mitigation ratio. As noted in the general assumptions

described below, for the purposes of this exercise, we assume that restoration at the mitigation site, including planting, is complete by the time of first project impact.

Two future comparisons were done. In the first, we varied habitat development. Two future scenarios were developed to describe the range of potential mitigation ratios and areas: a "best case" scenario with the fastest development and higher optimum ranges reflective of high management and success; and a "worst case" scenario, which has a more moderate rate of habitat development and maxima. This "worst case" scenario is not unsuccessful, but takes into consideration the possibility of less than fully optimal habitat for certain model parameters. Such limits on habitat potential may reflect constraints created by variability in weather and water availability, unforeseen disturbances like fire and disease, site-specific limitations such as power line easements, natural variation in parameters, and/or reduced long term management.

In the second comparison, we varied mitigation start. We compared mitigation that was started 10 years prior to impact, with mitigation concurrent with impact, for the worst case scenario only (see RESULTS, below).

d) *Mitigation Site Qualitative Evaluation*: Based on site visit observations, and our best professional opinion, we analyzed six identified locations in terms of other habitat value characteristics not reflected in the selected HEP models (distance from impact, corridor value, utility easements, buffer value, adjacent land use, floodplain/connectivity to delta waters, benefits to special-status species, unit size, etc.). Together with the futures estimate of mitigation site habitat value from the HEP, this qualitative evaluation was used to prioritize the sites and propose a recommended mitigation ratio for each location.

c) *Documentation*: Documentation of study activities is provided within the Appendices of this report (Excel spreadsheet, data forms, models, plates) and/or, as appropriate, is maintained in electronic files at the Service's field office (Excel spreadsheet; shapefile of plot boundaries; reference photographs; email communications).

ASSUMPTIONS

The following assumptions apply to the analysis and findings in this report:

-The impact site at TS_30_L, about 13.88 ac, can be adequately assessed as a single cover-type consisting of a mosaic of patches of scrub, herbaceous, scrub and tree cover in varied proportions, wetland, and ditch cover.

-All vegetation will be initially removed within this 13.88 ac project footprint.

-For the purposes of assessing without-project habitat value, we assume that the baseline measurements in this HEP are representative of the future, which is explicit in the calculations as shown by a constant HSI for the life of the project, without the project.

-The life of project is 50 years, equivalent to the period of economic analysis, and the period of analysis is 51 years, equal to the life of project plus construction, assumed to be one year.

-There is an inherent, unknown, level of error due to simplification of the measurement techniques for many of the variables, such as rough visual estimates of cover proportions (see Appendix A for details). Nevertheless, the measurements are assumed to be of adequate accuracy to represent existing habitat values of the site and hence, determine the losses and mitigation need associated with project implementation.

-There is also an inherent, unknown, level of error due to simplification of the calculation procedure, which uses the average HSI across plots and the overall impact area (13.88 ac), to calculate habitat value. Again, although higher precision is possible with a stratified sample across patch subtypes, and much greater effort, the simplified procedure is assumed adequate to represent existing habitat values and losses with project implementation.

-For the purpose of the simplified analysis of futures, below, we assume that mitigation site construction is completed at Target Year 1, the time of impact. Impact in this situation is the clearing of vegetation in TS_30_L, which would occur in the winter preceding construction-related earth-moving later that same year. In habitat restoration, earthwork is done before planting. Accordingly, the results discussed below for concurrent mitigation would apply only to a situation where restoration is complete (i.e., including planting), by the time of first impact.

RESULTS

Results are expressed in habitat value changes, in AAHUs, calculated for the five models at the impact site and a theoretical 10 ac site under best and worse case future scenarios (Table 1).

Table 1: Habitat Values for TS_30_L HEP study. Impact is loss of December 2021 baseline. Mitigation is for a conceptual 10 ac site started concurrent with construction, under best and worst case future habitat scenarios. See text and Appendix A for details.

	Habitat Val	ue change, AA	HUs	area to of AAHU lo	ffset ss, ac	"mitiga ratio"	tion
future habitat	scenario:	best	worst	best	worst	best	worse
	Impact	mitigation	mitigation				
Model:	TS_30_L	10ac	10ac				
Yell.	-8.8	8.8	5.9	9.9	14.9	0.72	1.08
Warbler							
Rip.	-8.8	5.7	3.0	15.5	29.3	1.12	2.11
Songbird							
Rip. Forest	-10.0	8.9	5.4	11.3	18.8	0.81	1.35
CT							
Downy	-3.2	2.1	1.4	14.8	22.2	1.07	1.60
Wood.							
Hairy Wood.	-0.9	4.1	0.9	2.1	9.2	0.15	0.88

Comparison of the losses at the impact site to the gains at the theoretical mitigation site is used to determine the mitigation need in terms of acres and the mitigation ratio. In such an analysis, it is customary for the Service to apply to its recommendation the result from the model that shows the greatest ratio. This practice ensures that in-kind values for other models with lower ratios would be at least fully compensated. For TS_30_L under the stated assumptions, and assuming a reasonable worst-case future scenario for mitigation, full compensation for loss of habitat values for all models would be achieved by a ratio (impact site: mitigation site) of about 2.11:1. This would require a riparian mitigation area of 29.3 ac to offset the habitat value impacts to the 13.88 ac at TS_30_L. As we explain below (Analysis), this result is not a precise prescription for our mitigation recommendation due to factors beyond the scope of the models.

We also conducted a futures analysis to compare mitigation scenarios (worst case only) where the mitigation was assumed initiated 10 years before impact (Table 2). This was intended to illustrate the mitigation value in excess of that needed for TS_30_L, which could be used to offset a future impact (APPENDIX A, TAB: futureexcess). For purposes of this exercise, we assume that the impact is the same as TS_30_L, although another reach would likely have a different baseline and area. Over a 51 year period of analysis of that scenario, an earlier mitigation start lowered the mitigation ratio. The greatest difference is for the Hairy Woodpecker model (ratio of 0.49 compared to 0.88, above) which is attributed to the longer period of snag presence. The minimum effect, for the Riparian Songbird Guild model, is slight (ratio of 2.05 compared to 2.11, above). Taken together, the results indicate that the recommended mitigation ratio with advance mitigation (or remaining excess used for future impacts) remains about 2:1.

Table 2: Habitat Values for TS_30_L HEP study. Impact is loss of December 2021 baseline. Mitigation is for a conceptual 10 ac site started either concurrent with construction or 10 years before construction ("10 yr", below), under worst case futures scenario. See text and Appendix A for details.

1100011011111							
	Habitat Va	alue change, A	AAHUs	area to offse	et ac	"mitigation	ratio"
			10	70.000,	40		1.0
start scenario:		concurrent	10 yr	concurrent	10 yr	concurrent	10 yr
site:	Impact	Mitigation	Mitigation				
Model:	TS_30_L	10ac	10ac				
Yell. Warbler	-8.8	5.9	6.7	14.9	13.1	1.08	0.94
Rip. Songbird	-8.8	3.0	3.1	29.3	28.4	2.11	2.05
Rip. Forest CT	-10.0	5.4	5.7	18.8	17.7	1.35	1.28
Downy Wood.	-3.2	1.4	1.5	22.2	20.8	1.60	1.50
Hairy Wood.	-0.9	0.9	1.3	9.2	6.8	0.88	0.49

ANALYSIS

Here, we consider differences between the impact site and alternative mitigation locations (Appendix D, Plates 2-3). This analysis involves other factors not inherent in HEP which, together with the HEP results, are used to develop recommendation for siting priority and site-

specific mitigation ratios for impacts at TS_30_L. Unless noted otherwise, the sites are privately owned. These mitigation locations are:

- Adjacent Corridor: This would be immediately west of TS_30_L, about 80-100 feet wide and roughly the length of TS_30_L. This would make it about 25 ac, corresponding to the parcel in which it is located. There is a force sewer main and associated easement running the full north-south length of the parcel and another shorter easement where high power lines cross. As with TS_30_L, adjacent land use is residential to the east and rice agriculture within this site and to the west.
- Manteca: This site is located 18 miles south of TS_30_L, about a half mile southwest of the intersection of South McKinley Street and Pink Muhly Lane. About 150 ac, it is currently in agriculture (gourd such as squash or pumpkin). It is surrounded by levees, and part of the site is close to Walthall Slough, a perennial waterway which has some natural oak woodland, riparian, and wetland vegetation.
- Van Buskirk Park: This site is about 5 miles south of TS_30_L along the right (north) bank of French Camp Slough. It is a recently decommissioned golf course with redevelopment pending, on land deeded to the City of Stockton for the purpose of community recreation. Currently, the site has been cleared of most woody vegetation, although some scrub has regrown in former water features. The mitigation concept is to include a component of habitat restoration of some of the 152 ac in redevelopment of the site in a way that would be consistent with that purpose. Improvement of the levee at this site is another component of the LSJRFS, although it could be set back or modified to provide tidal influence and additional benefit.
- Kumar Property: This site is a horseshoe-shaped area of 50 ac, currently with young olive trees, that surrounds another 40-50 ac mitigation site managed by the Center for Natural Lands Management known as the Pace Preserve. This mitigation site has a mosaic of trees, shrubs, and wetlands. High-power lines run through the site. It is several miles west of TS_30_L. The idea at this site would be to remove the olive trees and perform habitat restoration. Vegetation may be limited under the power lines.
- Solari Property: This 50 ac site is fallowed, former farmland with a few shrubs. It is also a few miles west of TS_30_L. It appears bordered by hay fields. It is perhaps 100 yards or so from the San Joaquin River, which is leveed. There are no visible power lines or other known utilities.
- Pump Station: This 113 ac site is a mile or so north of TS_30_L at the corner of 14 Mile and White Sloughs. An actual pump station takes up a small portion of the site, and another portion of the site was used at one time as sewage ponds. Several high-voltage lines and associated towers run through the site. Most of the site is fallow herbaceous weeds, and some scrub. The concept for this site would be to restore riparian (with shorter habitat types or wetland under power lines). It may be possible to modify the levee alignment to allow tidal exchange.

PRELIMINARY MITIGATION RECOMMENDATIONS

The recommendations in this report are to be considered preliminary due to the limited information about the mitigation sites. These recommendations are based on the Service's best professional opinion on resource considerations only, such as habitat quality, fish and wildlife

resource needs - including those of listed species, and landscape factors. Other factors such as real estate acquisition, cost, and implementation schedule are beyond our purview and are not discussed. As originally described in our FWCA report for the LSJRFS, repeated below, we use similarity in location and habitat type to prioritize mitigation options (Service 2016, p. 28):

"In order of decreasing preference, the Service's preference for type and location of mitigation action for this project would be: (1) avoidance of impact, such as through changes in design or design approach; (2) minimization of impact, by similar means; (3) compensation on-site, as in the same location of the impact; (4) compensation near-site, and in-kind, as in very close proximity to the impact site on the same waterway, and of the same or similar habitat type, or, if an alternative habitat type, one which will benefit the affected fish and wildlife resources; (5) off-site compensation, also in-kind; and (6) off-site compensation, out-of-kind, meaning a moderately or completely different habitat type, but preferably, a cover type which is as or more desirable than that being affected. Existing conservation banks, due to their siting and other factors, would be considered of relatively low priority in this scheme."

Following this scheme as a guide, the Service's first preference of the location for mitigation of TS 30 L impacts is Adjacent Corridor. This is closest to the impact site and would replace several functions not achievable with other options. This is the only option which would provide, as well as enhance, a direct corridor for wildlife movement between habitat at Tenmile Slough/Bulkley Cove and Fourteenmile Slough. Habitat in Adjacent Corridor would replace the buffer between the Brookside residential community and adjacent rice agriculture currently provided by habitat in the TS 30 L footprint. Disturbance of a portion of the site, with relocation of the drainage ditch, is already necessary for the construction of TS 30 L, so the additional work for restoration would be modest. In the long term, lateral groundwater movement due to proximity to the drainage ditch would presumably support the restoration. During the design high water event, riparian vegetation here might provide an increment of wave attenuation that could enhance flood protection. The sewer main and easement location, depth, and associated vegetation restrictions, would need to be assessed for consistency with restoration. If tall unmowed (or infrequently mowed) herbaceous vegetation were allowed in this easement, this might replace the value of the herbaceous/woody mixture of the current habitat at TS 30 L.

In general, habitat quality increases with unit size and width, which are limited in Adjacent Corridor by the narrow width of the allowed woodland. However, we noted that the TS_30_L impact site is also narrow and experiences apparently high wildlife use. Raptors seen on tall snags during the March 2021 site visit may be foraging in plowed fields near the site at that time of year, or in the herbaceous grassland patches within the site. Site specific factors not explicit in the HEP models which may attract wildlife to this site include the patch combination of dense shrub, herbaceous, and tree cover, nearby semi-perennial water, semi-perennial water of the drainage ditch, associated wetlands, aspect (west facing), or other factors. The Service would recommend mitigation similar to the HEP-derived 2.11:1 ratio (mitigation area:impact area) for the Adjacent Corridor, due to its similarity in landscape functions, very close proximity to the impact site, and potential to integrate restoration work with project construction.

The Kumar, Solari, and Pump Station sites are similar in their next nearest proximity to the impact site, and have a mixture of advantages and disadvantages on first impression. Both the Kumar and Pump Station sites have significant powerline easements that would likely limit habitat restoration underneath them in those areas. The Solari property has no such easements, but it is a smaller unit size. The Pump Station has the potential for contaminants in minor areas which would require at least assessment and possibly cleanup. All are more or less isolated sites which do not act as a corridor, although all are in the general proximity of the San Joaquin River or White Slough, which are potential wildlife corridors. The Service would recommend a slightly higher mitigation ratio for these sites, on the order of 2.5:1. Because one or more of these sites have a higher near term certainty of implementation than the others, and their proximity to the impact site, they are considered second preference to Adjacent Corridor.

Van Buskirk is more distant from the impact site, but has additional potential because it is close to a section of French Camp Slough near its confluence with the San Joaquin River, and also across the slough from the French Camp Mitigation Bank. This levee is heavily rocked and planned currently to be improved (raised, slurry wall) in place under the LSJRFS, but it could be set back or modified to provide a tidal connection. This would allow for water side vegetation (both wetlands and SRA cover) habitat at the land-water interface. Mitigation in the form of waterside vegetation and tidal connection would provide habitat values to the Delta and associated aquatic community. Although tidal habitats are not impacted by TS_30_L in particular, there are expected impacts to Delta tidal waters in other elements of the LSJRFS that do affect SRA cover and shallow water habitat generally. Actual habitat restoration area at Van Buskirk is likely to be partial due to other site uses, but still significant (~50-70 ac). If Van Buskirk were to be ready and available as mitigation for TS_30_L, the Service would recommend a lower mitigation ratio on the order of 2.0-2.5:1, with the lowest ratio associated with a setback design. However, due to distance from the impact site and lower certainty of near term implementation, it is considered third priority.

Manteca is the farthest from TS 30 L but it also is the largest in size of actual restorable habitat (150+ ac). It is far enough south that it is in the range of the listed riparian brush rabbit, which has been successfully propagated and introduced elsewhere on the west side of the San Joaquin River. Adequate water appears to be available through the existing agricultural infrastructure. This site, about a mile east of the San Joaquin River, would add to other habitat on Walthall Slough and the vicinity. Nevertheless, mitigating for impacts of TS 30 L, and likely other impacts within the LSJRFS so far away would have the adverse effect of consolidation (i.e., the formation of habitat voids by concentrating mitigation at one location, to offset impacts to widely distributed habitat). Here, mitigation would be at the south end of the LSJRFS, at the expense of impacted fragments and channel-associated riparian all to the north. Additionally, this particular site is also identified for habitat restoration under the Mossdale Tract Urban Flood Risk Reduction project (Mossdale UFRR) as an enhancement action. Although the Mossdale UFRR is in earlier planning and subject to change, the Service would need to further scrutinize the matter of changing the intent of enhancement to using it as mitigation for TS 30 L. Should Manteca ultimately be selected and ready for TS 30 L, the Service would recommend a higher mitigation ratio of at least 3:1. For these reasons, the Manteca site is considered fourth priority.

GENERAL RECOMMENDATIONS

1. Sequence: To ensure that the amount (area) of habitat is not reduced and, consistent with our general guidance, we recommend that mitigation be fully constructed and planted prior to the time of first impact. That is, if vegetation clearing and any associated elderberry transplantation for TS_30_L were done during the winter season to minimize impacts, the mitigation for those impacts should already be in place by the time of clearing.

2. Overall Mitigation Strategy: An overall strategy is recommended to incentivize early implementation and provide a mechanism for accounting impacts and mitigation. Because most sites are larger than needed for TS_30_L, any excess that is generated could potentially be used to offset impacts of future reaches of the LSJRFS. Mitigation ratios for future impacts will depend on the baseline habitat affected, the time that the excess mitigation has been in place, additional HEP study, and further coordination with the Corps expected as part of their development of an overall mitigation strategy.

3. Objectives: The Service will seek to achieve both (a) no net loss of in-kind habitat value, the resource category goal stated in Service (2016) as well as (b) no net loss of in-kind habitat area, for Resource Category 2 habitats. No net loss of area is justified when, as in this project area with its combined development for urban and agricultural uses, the habitat types are already rare and limited. This includes wetlands and riparian cover-types.

4. Mitigation Ratio: The recommended mitigation ratio will depend on the site, but should in no case be less than 2:1 on an area basis.

5. Listed Species compensation: To the extent possible, mitigation should include components of compensation for listed species, such as elderberry bushes for VELB, wetlands for giant garter snake, and habitats adjacent to tidal waters such as SRA cover and shallow water habitat for listed fishes.

REFERENCES

- DeHaven, R. 2001. Community-based Habitat Suitability Index Model for the Riparian Forest Cover-type Along Llagas Creek. September 2001. In-house report. Sacramento Fish and Wildlife Office. Sacramento, CA. 8 pp.
- Roberts, R.C., and Oscar Larson & Associates. 1986. Habitat Suitability Index Model Riparian Songbird Guild Humboldt Bay, California. Prepared for California State Coastal Conservancy. August 1986. 16 pp + attachments.
- Schroeder, R. L. 1982. Habitat Suitability Index Models: Yellow Warbler. July 1982. U.S. Fish and Wildlife Service Habitat Evaluation Procedures Group. Fort Collins, CO. Report No. FWS/OBS-82/10.27. 8 pp.
- . 1983. Habitat Suitability Index Models: Downy Woodpecker. U.S. Fish and Wildlife Service Habitat Evaluation Procedures Group. Fort Collins, CO. April 1983. Report No. FWS/OBS-82/10.38. 10 pp.
- Sousa, P. L. 1987. Habitat Suitability Index Models: Hairy Woodpecker. September 1987. U.S. Fish and Wildlife Service National Ecology Center. Fort Collins, CO. Biological Report 82(10.146). 19 pp.
- U.S. Army Corps of Engineers [Corps]. 2015a. San Joaquin River Basin Lower San Joaquin River, CA. Draft Integrated Interim Feasibility Report/Environmental Impact Statement/Environmental Impact Report. February 2015. 675 pp+ appendices
- 2015b. U.S. Army Corps of Engineers SMART Planning Feasibility Studies: A Guide to Coordination and Engagement with the Services. September 2015. Available on the internet at: https://planning.erdc.dren.mil/toolbox/library/smart/SmartFeasibility_Guide_highres.pdf 33 pp.
- . 2018. San Joaquin River Basin Lower San Joaquin River, CA. Final Integrated Interim Feasibility Report/Environmental Impact Statement/Environmental Impact Report. January 2018. 562 pp+ appendices.
- U. S. Fish and Wildlife Service [FWS]. 1980a. 101 ESM Habitat as a Basis for Environmental Assessment. March 31, 1980. Division of Ecological Services. U.S. Fish and Wildlife Service. Washington, D.C. ~50 pp.
- _____. 1980b. 102 ESM Habitat Evaluation Procedures. March 31, 1980. Division of Ecological Services. Washington, D.C. ~100 pp.
- . 1981. Standards for the Development of Habitat Suitability Index Models. April 10, 1981. Division of Ecological Services. Washington, D.C. ~100 pp.

- . 2009. Revised Habitat Evaluation Procedures Report for Napa Creek, Napa River/Napa Creek Flood Protection Project. October 30, 2009. Sacramento Fish and Wildlife Office. 17 pp + appendices (197 pp total).
- . 2016. Final Fish and Wildlife Coordination Act report for the Lower San Joaquin River Feasibility Study. July 25, 2016. Sacramento Fish and Wildlife Office. Sacramento, California. 40 pp.

APPENDIX A: Excel Spreadsheet for HEP of TS_30_L

	А	В	С	D	E	F	G	Н	I	J	К	L	М	N	0	Р
1	THIS IS TH	E "Models"	ТАВ													
2																
3	This Excel	Spreadshee	et has seve	n TABS and	calculates	habitat val	ue for the	HEP sampli	ng done at	TS_30_L ir	December	r 2021	last edited	11/2/2022	-	
4	This first T	AB starts i	ncludes a d	lescription	of the seve	n TABs in t	his excel sp	readsheet,	and descri	bes the mo	odels used					
5	Sampling o	lates: Dece	mber 2, 3,	7, and 8, 2	021											
6																
7																
8	TABS	Models: de	escribes the	e variables,	curves, an	d methods	used									
9		HSIdataca	c: includes	raw data f	rom field da	atasheets,	plot values	for variabl	es (V), asso	ciated suit	ability indic	cices (SI), a	nd HSI			
10			also incluc	les rough c	alculation c	of sampled	area (all ha	ibitat area)	, and avera	ige HSIs wh	ich are use	d in future	S			
11		Tree Hts:	includes ra	aw data fro	m field dat	asheets, pl	ot averages	s in meters	and feet, S	I calculatio	ns for V1(r	fct) and V3	(rsg) variab	les models		
12		Species: in	cludes list	of species s	een in each	n plot, as n	oted on fie	ld datashee	ets							
13		BasalArea	includes a	all direct m	easuremen	ts and estir	mations in f	field for ba	sal area for	each plot,	and total c	alculations	i			
14		Futures: d	lesktop exe	ercise to ass	sess mitigat	ion area ne	eed; best p	rofessional	opinion of	best case a	and worst o	case scenar	io			
15			developed	l futures fo	r each mod	el; compar	ed loss to e	existing; ba	sed on con	current mit	tigation					
16		FuturesEx	cess: this ta	b is a scen	ario in whic	h mitigatio	n is set to l	pegin at 10	years old a	at time of p	roject impa	act				
17																
18		CAUTION:	futures are	e best case,	preliminar	y/subject t	o review/re	evision, act	ual habitat	value may	vary with I	mitigation t	timing, actu	al performation	ance,	
19			as well as	other facto	rs not refle	cted in HEI	p models (e	.g., adjacer	ncy to wate	er/ag, conn	ectivity, loo	cation/posi	tion on lan	dscape, etc.)	
20																
21	Models ch	osen basec	l on genera	al character	istics, dom	inated by s	hrub/unde	rstory vege	etation, son	ne larger w	illows, a fe	w larger tro	ees			
22	snags susp	ected; high	n bird use n	oted in Ma	arch 2021 si	te visit (rap	otors, song	birds, wood	dpeckers, h	ummingbi	rds, others)	;				
23	proximity	o ag fields	, water via	ag drainag	e ditch, and	separatio	n from hun	nan activity	(levee, res	tricted acc	ess) enhan	ces wildlife	use			
24																
25	1. modified	d Yellow W	arbler (Sch	roeder 198	32) - FWS "b	luebook" r	nodel; deri	ved from e	arlier Mors	se studies;						
26	V1- percer	t deciduou	is shrub cro	own cover,	total as me	asured on	two transe	cts in each	plot. Optin	nal at 60-80	0% cover					
27	note: herb	aceous, ind	cluding tall	stiff herba	ceous, are r	not include	d as shrub,	that is, it is	s woody on	lly; frequen	itly estimat	ed to near	est 5 or 10	feet.		
28	V2 - avera	ge height o	f deciduou	s shrub car	iopy, in me	ters; avera	ge of shrub	s along or	nearest to	two transe	cts. Optima	al at 2+ met	ters.			
29	V3 - % dec	iduous shri	ub canopy	cover com	posed of hy	/drophytic	shrubs, ft c	over along	two transe	ects conver	ted to %. N	Vin SI = 0.1	; Max SI at	100% cover	·	
30	V4 - % cov	er of tall tr	ees (> 30 fe	et tall), me	asured as t	he canopy	greater that	an 30 feet o	over two tra	ansects in e	each plot					
31	Note: V4 i	s a modific	ation, an a	dded varial	ole first dev	veloped by	local spons	or in a 198	8 HEP for t	he upper C	iuadalupe l	River				
32	The 1988 \	version had	l a minimu	m of zero fo	or 0% tall tr	ees, optim	um of 1.0 f	rom 50-759	% tall trees,	, and declir	ne to 0.75 a	t 100% tall	trees			
33	This origin	al modifica	tion was fu	irther mod	ified in the	1998, USF\	NS HEP, to	have a min	nmum valu	e of 0.5 at	0% tall tree	es.				
34	This furthe	r modified	model, wi	th 4 variabl	es was agai	in used in t	ne 2009 Re	each 12 HE	P on the Gu	iadalupe Ri	ver	<u> </u>	<u> </u>			
35	Use of tall	trees, for c	occasional f	orage beat	s, or nest p	rotection f	rom cowbi	rd parasitis	m, is consis	stent with y	ellow warl	oler observ	ations			
36	since More	e and the	1982 Schro	eder mode	l, and is pa	rticularly a	pplicable to	o yellow wa	arbler popu	lations in t	he western	USA				
37						1) 0 0 10										
38	HSI (yellow	warbler n	nodified) =	(SIV1 X SIV2	2 x siv3 x V2	+)^1/2										
39																

	А	В	С	D	E	F	G	Н	I	J	К	L	М	Ν	0	Р
40	2. Riparia	n Songbird	Guild (Rob	erts 1986)												
41	V1 - % shrı	ub cover: k	by transect	intercept n	nethod (fee	et cover of	woody veg	etation 1-3	m tall alon	g transect/	total trans	ect length *	* 100)			
42	V2 - % tree	e cover: by	transect in	itercept me	ethod (feet	cover of w	oody veget	ation > 3m	tall along t	ransect/tot	tal transect	t length * 1	00)			
43	V3 - avera	ge height o	f overstory	trees: A m	ninimum of	3 overstor	y trees wer	e selected	within each	n 300 x ~10	0 ft plot, a	nd measure	ed using a c	linometer		
44	In some in	stances, a o	clear line of	f sight to th	e treetop a	ind tape co	uld not be	established	l, so these	trees were	estimated	visually				
45	note: clino	meter and	visual estir	nates are n	oted in the	e data shee	ts with "c"	or "v"; cline	ometer esti	mates are i	in feet calc	ulated fron	n the slope	angle		
46	percentage	e multiplied	d by ground	d distance,	however, t	hese angle	s and dista	nces are no	t recorded,	, only the h	eight in fe	et				
47	V4 - Canop	by Layering	Category:	1-none (SI	=0); 2-shrul	os only (SI=	.25); 3=tall	shrubs onl	y (SI=.5); 4=	trees only=	(SI=.75); 5	=multiple la	ayers (SI=1)			
48	V5 - numb	er of snags	> 4 inches	per acre: s	snags were	identified	for the enti	re plot, rou	ighly 1/14 a	acre						
49	assuming	300 ft X 100	0 ft wide pl	ots (3000 s	q ft), the su	itability in	dex is maxi	mized by 1	snag obser	ved in a plo	ot					
50	dead limbs	s of trees w	vere counte	d as snags	if at least b	reast heigh	nt (4.5 feet)	above the	ground.							
51	V6 - Perce	nt of site in	woody ve	getation; th	nis was mea	sured dire	ctly by all w	oody vege	tation over	a transect	("feet woo	ody" on dat	a sheets)			
52	note: herb	aceous, ind	cluding tall	stiff herbad	ceous, are r	not include	d as shrub,	that is, it is	woody on	ly; frequen	tly estimat	ed to neare	est 5 or 10	eet.		
53																
54	HSI = {[(V1	+ V2 + (2 X	V3)/4)X V4]^0.5 + V5]	}*V6/2											
55																
56	3. <u>Riparia</u>	n Forest Co	over type (L	JSFWS. 20	001. Sacra	mento Fish	n and Wildli	fe Office in	-house mod	del)						
57	V1 - Avera	ge tree hei	ght, in feet	; optimal at	t 60 feet an	d greater;	same data	as rip. song	bird guild \	/3, convert	ed to feet,	different S	l curve			
58	V2 - Avera	ge canopy	width of rip	parian trees	s, measure	d as interse	ection along	g transect a	cross ripari	an zone. m	$\sin SI = 0.2$	at 30 or les	s ft; opt SI	= 1 at 70+	ft.	
59	field estim	ate by taki	ng total tra	nsect lengt	h, and subt	racting tap	e-measure	d outer he	rbaceous, if	fany.						
60	V3 - Tree C	Canopy Clos	sure, measi	ured as per	cent of tre	e cover ove	er transect;	optimal at	60-80%; SI	=0.8 at 100	%, SI=0.0 a	it 0%				
61	Note: 5M	criterion (1	L6.5 ft) for t	trees, so m	ay not be s	ame as rip	. songbird {	guild variab	oles V2 (tree	e cover, 3N	1+) or V6 (a	all woody co	over, which	includes s	hrubs)	
62	Rationale i	s that low	shrubs (1-3	M) are no	t considere	d "canopy'	', nor "tree'	; notation	made on a	ll data shee	ets that rip.	songbird g	guild V2 is t	o be used.		
63	V4 - numb	er of tree c	or shrub spe	ecies; optin	nal at 4+ sp	ecies; mini	mum value	of 0.6 for 1	1 species							
64	V5 - Avera	ige Unders	tory Vegeta	ative Densi	ty in %, this	calculated	from the f	eet of inter	ception of	vegetation	at planes a	at 2, 6, and	14 feet, es	timated at	each transe	ect
65	Note: One	e such over	all estimate	e at each tr	ansect, the	n average (of transects	s within a p			:f			A 10		
60 67	A (non-nat	ive adjustr	rface wate): If thee ca	anopy dom	inated by n	than 20' f	, HSI IS real		%, SO A=.0;	17 native-d	$\frac{1}{100}$ R = 1.01	ree canopy	A = 1.0	du)	
69	b (separat			1). II HParia	an euge beg			om water,	reduce by	1/5, SU D-2	75, otherw	/ISE D -1.0 ((not applied		uy)	
60	HSI (ripari	an forest co	over type) -	- ^*B*(/(ci\/	/1 * ci\/2 * c	-i\//)^1/3 ⊥	. (ci\/2 * ci\	/5\^ 5\/2\								
70					1 310 3	104) 1/3 i	(3172 31)	10) .0)/2)								
70	4 Hairy W	oodnecker	(Sousa 198	27)												
72	Note: mod	lel applicab	ility states	a minimur	n of 4 ha (~	11 acres) o	f habitat ar	nd 40 M wig	th margin	al for TS_3	0 L but o	ther forest	ed habitat i	s present s	outh	
73	Note: varia	ables V1-3	measured v	with Biltmo	re stick						,					
74	V1	snags>25c	m/acre	optimized	at 2+/acre	due to rar	ity of this s	ize snag, ar	nd use in ne	esting, aver	age of all r	lots is appl	ied for this	variable (t	otal ~1.4 ac	:)
75	V2	nest comp	onent; SI=0) at >8", 1.0) at 16+"; n	nean dbh o	f overstory	tree; overs	story trees	in each plo	t as could l	be reasonal	bly estimat	ed;		-
76	V3	cover com	ponent; SI=	=.5<6", 1.0>	>10"; mean	dbh of ove	erstory tree	; plot speci	fic as with	V2				-		
77	V4	% tree can	opy cover;	from trees	6+M, abov	e songbird	guild/RFC1	۲ models; c	oarse estim	nate (neare	st 5-10% o	r feet recor	ded)			
78																

	А	В	С	D	E	F	G	Н	I	J	К	L	М	Ν	0	Р
79	HSI = (V1 +	.75V2) X (\	/3 X V4)													
80																
81	5. <u>Downy</u>	Woodpeck	<u>er</u> (USFWS	5.1983.F\	NS/OBS-82	2/10.38)										
82	V1 - Basal	area; at 4.5	5' height, ol	otimal (SI=2	1) from 10-2	20 sq M/he	ectare (2.71	ac), SI=0 a	t 0 basal ar	ea; SI=.5 at	: 30+sq M.					
83	83 Note: alternative method to cruz-all needed for this study due to obscured visibility from shrubs, did stem count/diameter coarse estimate of basal area of e														of entire p	olot
84	V2 - densit	y of snags	> 6" in diar	neter, per a	acre; optim	al at 5+ sna	ags/acre									
85		optimized	at 5+/acre	; due to use	e in nesting	, average o	of all plots is	applied fo	or this varia	ble (total ~	1.4 ac for 2	1 plots)				
86	Note: a co	nstant snag	g density is	used (all p	lots) with a	plot-specif	ic basal are	ea								
87																
88	HSI (down	y woodpec	ker) = the r	nininum SI	of V1 and V	/2										

	Α	В	С	D	Е	F	G	Н	Ι	J	К	L	М	Ν	0	Р
1	THIS IS THE "HSIdat	acalc" TAB														
2	Yellow Warbler Mo	dified														
3	note: for V3, essent	tially all deciduo	ous shrub ca	anopy cover	is by hydr	ophytic spe	cies, thus \	/3 = 1.0 unl	ess specifie	d otherwis	e					
4	Plot	1		2		3		4		5		6		7		
5	transect	1	2	1	2	1	2	1	2	1	2	1	2	1	2	
6	length	65	100	100	100	120	100	100	100	100	100	100	100	100	100	
7	feet dsc	18	79	72	82	60	100	50	90	90	100	70	90	90	90	
8	V1trans	0.28	0.79	0.72	0.82	0.5	1	0.5	0.9	0.9	1	0.7	0.9	0.9	0.9	
9	V1avg	0.59		0.77		0.73		0.70		0.95		0.80		0.90		
10	SI(V1)avg	0.98		1.00		1.00		1.00		0.70		1.00		0.80		
11	V2	2		2		2		1.6	2	1.88	1.92	1.45	1.5	1.79		
12	V2avg	2		2		2		1.8		1.9		1.475		1.79		
13	SI(V2)	1.00		1.00		1.00		0.80		0.94		0.73		0.90		
14	V3	1.00		1.00		1.00		1.00		1.00		1.00		1.00		
15	SI(V3)	1.00		1.00		1.00		1.00		1.00		1.00		1.00		
16	V4	0	0	0	0	0.6	0.1	0.6	0.1	0.3	0.3	0	0.3	0	0.2	
17	V4avg	0		0		0.35		0.35		0.3		0.15		0.1		
18	SI(V4)	0.5		0.5		1		1		0.8		0.5		0.5		
19																
20	HSI-ywmod	0.70		0.71		1.00		0.89		0.73		0.60		0.60		
21	HSI-yworig	0.99		1.00		1.00		0.89		0.81		0.85		0.85		
22																
23	Plot	8		9		10		11		12		13		14		
24	transect	1	2	1	2	1	2	1	2	1	2	1	2	1	2	
25	length	100	100	60	50	100	100	100	100	100	100	100	100	100	100	
26	feet dsc	85	100	60	50	60	100	90	100	95	75	80	80	77	74	
27	V1trans	0.85	1	1	1	0.6	1	0.9	1	0.95	0.75	0.8	0.8	0.77	0.74	
28	V1avg	0.93		1.00		0.80		0.95		0.85		0.80		0.76		
29	SI(V1)avg	0.75		0.60		1.00		0.70		0.90		1.00		1.00		
30	V2	1.76	1.88	1.6	2	2	1.8	1.6	2	2	2	1.1	2	1.65	1.22	
31	V2avg	1.82		1.8		1.9		1.8		2		1.55		1.435		
32	SI(V2)	0.88		0.80		1.00		0.80		1.00		0.55		0.83		
33	V3trans	1.00	1.00	1.00	1.00	1.00	1.00	0.40	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
34	V3avg	1.00		1.00		1.00		0.70		1.00	1.00	1.00		1.00		
35	SI(V3)avg	1.00		1.00		1.00		0.73		1.00		1.00		1.00		
36	V4	0	0	0	0	0	0.1	0.2	0	0.2	0	0	0	0.2	0	
37	V4avg	0		0		0.05		0.1		0.1		0		0.1		
38	SI(V4)	0.5		0.5		0.5		0.7		0.7		0.5		0.7		
39																
40	HSI-ywmod	0.57		0.49		0.71		0.53		0.79		0.52		0.76		
41	HSI-yworig	0.81		0.69		1.00		0.64		0.95		0.74		0.91		
42																
43	Plot	15		16		17		18		19		20		21		

	А	В	С	D	E	F	G	Н	I	J	К	L	М	Ν	0	Р
44	transect	1	2	1	2	1	2	1	2	1	2	1	2	1	2	
45	length	100	100	150	120	100	100	80	75	100	90	80	80	80	80	
46	feet dsc	50	50	135	90	50	85	60	30	30	0	45	60	75	60	
47	V1	0.50	0.5	0.9	0.75	0.5	0.85	0.75	0.4	0.3	0	0.5625	0.75	0.9375	0.75	
48	V1avg	0.50		0.83		0.68		0.58		0.16		0.66		0.84		
49	SI(V1)avg	0.83		0.93		1.00		0.97		0.26		1.00		0.91		
50	V2	0.5	0.81	2	1.466667	1.75	1.647059	2	2	1.25	0	2	1.8	2	1.75	
51	V2avg	0.655		1.733333		1.698529		2		0.625		1.9		1.875		
52	SI(V2)	0.25		1.00		0.88		1.00		0.63		1.00		1.00		
53	V3	1.00	1.00	1.00	1.00	1.00	1.00	0.40	1.00	1.00	0.00	1.00	1.00	1.00	0.69	
54	V3avg	1.00		1.00		1.00		0.70		0.50	0.10	1.00		0.84		
55	SI(V3)avg	1.00		1.00		1.00		0.73		0.55		1.00		0.86		
56	V4	0	0	0	0.1	0	0	0	0.533333	0	0	0	0	0	0.2	
57	V4avg	0		0.05		0		0.266667		0		0		0.1		
58	SI(V4)	0.5		0.5		0.5		0.5		0.5		0.5		0.5		
59																
60	HSI-ywmod	0.32		0.68		0.66		0.59		0.21		0.71		0.63		
61	HSI-yworig	0.46		0.97		0.94		0.84		0.30		1.00		0.89		
62																
63	Riparian Songbird G	iuild														
64	note: for variables \	/1 and V2, thes	e are consid	dered non o	verlapping	, as "trees"	being >3N	only gene	rally have lo	wer limbs	that go 1-3N	∕l as well				
65	note: this non-over	apping assump	tion may m	nodestly und	derestimat	e foliage SIs	and overa	ll HSI but is	deemed ap	opropriate	for this site					
66	note: V4 is the max	imum, not the a	average, of	both transe	cts, consid	ering that r	nultiple lay	ers anywhe	ere in a plot	applies						
67	Plot	1		2		3		4		5		6		7		
68	transect	1	2	1	2	1	2	1	2	1	2	1	2	1	2	
69	length	65	100	100	100	120	100	100	100	100	100	100	100	100	100	
70	ftshrub<3m	18	79	77	82	60	100	50	90	90	100	40	45	30	30	
71	V1	27.69230769	79	77	82	50	100	50	90	90	100	40	45	30	30	
72	V1avg	53.34615385		79.5		75		70		95		42.5		30		
73	SI(V1)avg	1.00		1.00		1.00		1.00		0.63		0.81		0.50		
74	fttree>3m	12	70	77	82	80	80	20	70	80	80	50	55	70	60	
75	V2	18.46153846	70	77	82	66.66667	80	20	70	80	80	50	55	70	60	
76	V2avg	44.23		79.5		73.33333		45		80		52.5		65		
77	SI(V2)avg	0.21		1		1		0.25		1		1		1		
78	V3	7.66		7.10		10.8966		13.716		8.5344		9.492343		5.7912		
79	SI(V3)	1		1		1		1		1		1		0.95824		
80	V4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	
81	V4max	5.00		5.00		5.00		5.00		5.00		5.00		5.00		
82	SI(V4)max	1		1		1		1		1		1		1		
83	snags>4"	1		3		1		4		0		1		6		
84	V5	1.76		4.356		1.32		5.808		0		1.452		8.712		
85	SI(V5)	0.59		1.00		0.44		1.00		0.00		0.48		1.00		
86	allwoodyft	18.00	79	77.00	82	120.00	90	70.00	90	90.00	100	70.00	90	90.00	90	

	А	В	С	D	E	F	G	Н		J	K	L	М	Ν	0	Р
87	V6%allwoody	27.69	79.00	77.00	82.00	100.00	90.00	70.00	90.00	90.00	100.00	70.00	90.00	90.00	90.00	
88	V6avg	53.35		79.50		95.00		80.00		95.00		80.00		90.00		
89	SI(V6)avg	0.51		0.78		0.95		0.79		0.95		0.79		0.89		
90																
91	HSI-rsg	0.38		0.78		0.68		0.75		0.45		0.58		0.86		
92																
93	Plot	8		9		10		11		12		13		14		
94	transect	1	2	1	2	1	2	1	2	1	2	1	2	1	2	
95	length	100	100	60	50	100	100	100	100	100	100	100	100	100	100	
96	ftshrub<3m	40	25	60	0	30	60	40	100	65	40	80	80	32	40	
97	V1	40	25	100	0	30	60	40	100	65	40	80	80	32	40	
98	V1avg	32.5		50		45		70		52.5		80		36		
99	SI(V1)avg	0.56		1.00		0.88		1.00		1.00		1.00		0.65		
100	fttree>3m	60	75	0	40	70	40	40	0	30	30	5	5	45	30	
101	V2	60	75	0	80	70	40	40	0	30	30	5	5	45	30	
102	V2avg	67.50		40		55		20		30		5		37.5		
103	SI(V2)avg	1.00		0.75		1.00		0.25		0.50		0.00		0.69		
104	V3	8.26		7.62		6.096		8.382		6.477		7.112		6.2992		
105	SI(V3)	1		1		1		1		1		1		1		
106	V4	5		5		5	5	5	5	5	5	5	5	5		
107	V4max	5.00		5.00		5.00		5.00		5.00		5.00		5.00		
108	SI(V4)max	1		1		1		1		1		1		1		
109	snags>4"	2		0		1		3		4		4		3		
110	V5	2.904		0		1.452		4.356		5.808		5.808		4.356		
111	SI(V5)	0.97		0.00		0.48		1.00		1.00		1.00		1.00		
112	allwoodyft	85	100	60	50	100	100	100	100	100	75	85	85			
113	V6%allwoody	85	100	100	100	100	100	100	100	100	75	85	85	77	74	
114	V6avg	92.50		100.00		100.00		100.00		87.50		85.00		75.50		
115	SI(V6)avg	0.92		1.00		1.00		1.00		0.87		0.84		0.74		
116																
117	HSI-rsg	0.88		0.48		0.73		0.95		0.84		0.79		0.71		
118																
119	Plot	15		16		17		18		19		20		21		TEST
120	transect	1	2	1	2	1	2	1	2	1	2	1	2	1	2	
121	length	100	100	150	120	100	100	80	75	100	90	80	80	80	80	
122	ftshrub<3m	40	30	10	60	35	85	40	29	30	0	20	40	30	20	
123	V1	40	30	6.666667	50	35	85	50	38.66667	30	0	25	50	37.5	25	
124	V1avg	35		28.33333		60		44.33333		15		37.5		31.25		
125	SI(V1)avg	0.63		0.46		1.00		0.86		0.13		0.69		0.53		1
126	fttree>3m	0	20	130	30	10	30	20	50	0	0	25	20	45	55	
127	V2	0	20	86.66667	25	10	30	25	66.66667	0	0	31.25	25	56.25	68.75	
128	V2avg	10.00		55.83333		20		45.83333		0		28.125		62.5		
129	SI(V2)avg	0.00		1.00		0.25		0.90		0.00		0.45		1.00		1

	А	В	С	D	E	F	G	Н	I	J	K	L	М	Ν	0	Р
130	V3	8.26		7.18		7.3152		9.0424		5.588		8.1788		6.94944		
131	SI(V3)	1		1		1		1		0.9176		1		1		1
132	V4	1	5	5	5	5	5	5	5	2	1	5	5	5	5	
133	V4max	5.00		5.00		5.00		5.00		2.00		5.00		5.00		
134	SI(V4)max	1		1		1		1		0.25		1		1		1
135	snags>4"	4		2		1		2		4		1		1		
136	V5	5.808		2.151111		1.452		3.747097		6.113684		1.815		1.815		
137	SI(V5)	1.00		0.72		0.48		1.00		1.00		0.61		0.61		1
138	allwoodyft	50	50	135	90	50	85	60	65	30	0	45	60	75	75	
139	V6%allwoody	50	50	90	75	50	85	75	87	30	0	56	75	94	94	
140	V6avg	50.00		82.50		67.50		80.83		15.00		65.63		93.75		
141	SI(V6)avg	0.47		0.82		0.66		0.80		0.11		0.64		0.93		1
142																
143	HSI-rsg	0.43		0.67		0.46		0.79		0.07		0.48		0.72		1.00
144																
145	Riparian Forest Cov	er Type														
146	note: V1 is in feet; \	V2 is feet over tra	ansect; V3	is % estima	ite over tra	nsect; V5 is	s % visual e	stimate ove	r transect,	at 3 planes	, averaged,	recorded of	on datashee	et (entered	here)	
147	Plot	1		2		3		4		5		6		7		
148	transect	1	2	1	2	1	2	1	2	1	2	1	2	1	2	
149	length	65	100	100	100	120	100	100	100	100	100	100	100	100	100	
150	V1treehtft	21		23		21		27		24		24		30		
151	SI(V1-RFCT)	0.35		0.39		0.34		0.45		0.39		0.40		0.49		
152	V2ripwdthft	20	80	77	82	120	100	100	90	90	100	85	90	90	90	
153	V2avg	50		79.5		110		95		95		87.5		90		
154	SI(V2-RFCT)	0.6		1		1		1		1		1		1		
155	V3canopy%	0	20	20	0	80	50	20	70	80	80	5	50	60	40	
156	V3avg	10		10		65		45		80		27.5		50		
157	SI(V3-RFCT)	0.2		0.2		1		0.9		1		0.55		1		
158	V4#spp	4		3		4		5		4		4		5		
159	SI(V4-RFCT)	1		0.9		1		1		1		1		1		
160	V5undstry	5	55	60	70	50	85	40	75	90	90	60	75	80	55	
161	V5avg	30		65		67.5		57.5		90		67.5		67.5		
162	SI(V5-RFCT)	1.00		0.94		0.91		1.00		0.63		0.91		0.91		
163	Nnadjfctr	1		1		1		1		1		1		1		
164																
165	HSI-RFCT	0.59		0.69		0.83		0.87		0.76		0.78		0.87		
166																
167	Plot	8		9		10		11		12		13		14		
168	transect	1	2	1	2	1	2	1	2	1	2	1	2	1	2	
169	length	100	100	60	50	100	100	100	100	100	100	100	100	100	100	
170	V1treehtft	23.5		25		20		27.5		21.25		23.33333		20.66667		
171	SI(V1-RFCT)	0.39		0.42		0.33		0.46		0.35		0.39		0.34		
172	V2ripwdthft	85	100	60	50	100	100	100	100	100	100	100	100	100	100	

	А	В	С	D	E	F	G	Н	I	J	К	L	М	Ν	0	Р
173	V2avg	92.5		55		100		100		100		100		100		
174	SI(V2-RFCT)	1		0.7		1		1		1		1		1		
175	V3canopy%	50	30	0	25	90	30	40	0	20	30	5	0	40	30	
176	V3avg	40		12.5		60		20		25		2.5		35		
177	SI(V3-RFCT)	0.8		0.25		1		0.4		0.5		0.05		0.7		
178	V4#spp	5		4		5		3		4		5		7		
179	SI(V4-RFCT)	1		1		1		0.9		1		1		1		
180	V5undstry	70	70	50	80	90	80	60	60	60	70	35	35	55	30	
181	V5avg	70		65		85		60		65		35		42.5		
182	SI(V5-RFCT)	0.88		0.94		0.69		1.00		0.94		1.00		1.00		
183	Nnadjfctr	1		1		1		1		1		1		1		
184																
185	HSI-RFCT	0.81		0.64		0.76		0.77		0.76		0.63		0.81		
186																
187	Plot	15		16		17		18		19		20		21		
188	transect	1	2	1	2	1	2	1	2	1	2	1	2	1	2	
189	length	100	100	150	120	100	100	80	75	100	90	80	80	80	80	
190	V1treehtft	27		24		24		30		18		27		23		
191	SI(V1-RFCT)	0.45		0.39		0.40		0.49		0.31		0.45		0.38		
192	V2ripwdthft	90	60	135	90	65	75	60	70	50	0	45	60	75	80	
193	V2avg	75		112.5		70		65		25		52.5		77.5		
194	SI(V2-RFCT)	1		1		1		0.9		0.2		0.65		1		
195	V3canopy%	0	0	135	90	5	35	20	65	0	0	20	10	50	62.5	
196	V3avg	0		112.5		20		42.5		0		15		56.25		
197	SI(V3-RFCT)	0		0.59375		0.4		0.85		0		0.3		1		
198	V4#spp	7		6		2		5		6		6		6		
199	SI(V4-RFCT)	1		1		0.8		1		1		1		1		
200	V5undstry	15	30	85	40	30	65	40	40	25	0	45	50	75	50	
201	V5avg	22.5		62.5		47.5		40		12.5		47.5		62.5		
202	SI(V5-RFCT)	0.80		0.97		1.00		1.00		0.53		1.00		0.97		
203	Nnadjfctr	1		1		1		1		1		1		1		
204																
205	HSI-RFCT	0.45		0.80		0.72		0.86		0.37		0.72		0.85		
206																
207	Downy Woodpecke	r														
208	see BasalArea TAB o	of this spreadsh	eet for V1,	SI(V1-dw) (calculations											
209	Plot:	1	2	3	4	5	6	7	8	9	10					
210	SI(V1-dw)	0.27	1.00	0.99	0.50	0.50	0.80	0.19	0.05	0.16	1.00					
211	plot 10"snag	1	3	1	2	0	1	6	0	0	1					
212	V2-snag/ac	1.5	4.4	1.5	2.9	0.0	1.5	8.7	0.0	0.0	1.5					
213	SI(V2-dw)	0.29	0.87	0.29	0.58	0.00	0.29	1.00	0.00	0.00	0.29					
214	HSI-dw	0.27	0.87	0.29	0.50	0.00	0.29	0.19	0.00	0.00	0.29					
215																

	А	В	С	D	E	F	G	Н	I	J	K	L	М	Ν	0	Р
216	Plot:	11	12	13	14	15	16	17	18	19	20	21				
217	SI(V1-dw)	0.20	0.74	0.71	0.16	0.34	0.59	0.77	0.30	0.14	0.78	0.71				
218	plot 10"snag	3	3	0	2	2	1	0	1	1	0	0				
219	V2-snag/ac	4.4	4.4	0.0	2.9	2.9	1.5	0.0	1.5	1.5	0.0	0.0				
220	SI(V2-dw)	0.87	0.87	0.00	0.58	0.58	0.29	0.00	0.29	0.29	0.00	0.00				
221	HSI-dw	0.20	0.74	0.00	0.16	0.34	0.29	0.00	0.29	0.14	0.00	0.00				
222																
223	Test calculation (av	erage snag den	sity)	1.16			Test calcula	ation (avera	age basal ar	ea)	38.14					
224	associated snag SI(\	/1-dw)		0.23			associated	BA SI(V2-d	w)		0.87					
225	Test calculation, HS	I-dw from aver	age snag ar	id BA	0.23											
226	Test calculation, HS	I-dw as average	e HSI across	plots	0.23											
227																
228	Hairy Woodpecker															
229	see BasalArea TAB o	of this spreadsh	neet for V1-	hw (DbH of	f overstory t	rees) calcu	lations									
230	Plot:	1	2	3	4	5	6	7	8	9	10					
231	trans1length	65	100	120	100	100	100	100	100	60	100					
232	trans2length	100	100	100	100	100	100	100	100	50	100					
233	plot10"snag	1	2	0	0	0	0	3	0	0	0					
234	V1-snag/ac	1.5	2.9	0.0	0.0	0.0	0.0	4.4	0.0	0.0	0.0					
235	SI(V1-hw)	0.29	0.58	0.00	0.00	0.00	0.00	0.87	0.00	0.00	0.00					
236	meandbhov	8.8	1.0	13.8	8.8	4.7	6.5	12.5	6.0	1.3	12.5					
237	SI(V2-hw)	0.11	0.00	0.83	0.11	0.00	0.00	0.65	0.00	0.00	0.65					
238	SIN	0.37	0.58	0.63	0.09	0.00	0.00	1.36	0.00	0.00	0.48					
239	Testcalc SINavgsng	0.26	0.18	0.80	0.27	0.18	0.18	0.66	0.18	0.18	0.66					
240	SI(V3-hw)	0.86	0.50	1.00	0.87	0.50	0.57	1.00	0.51	0.50	1.00					
241	cancovtree1	10	20	80	20	60	0	60	50	0	15					
242	cancovtree2	25	20	20	50	70	30	30	25	25	25					
243	cancovtree%total	21	20	45	35	65	15	45	38	23	20					
244	SI(V4-hw)	0.09	0.07	0.44	0.29	0.71	0.00	0.43	0.32	0.11	0.07					
245	SIC	0.08	0.04	0.44	0.25	0.36	0.00	0.43	0.16	0.06	0.07					
246	HSI(hw)	0.03	0.02	0.27	0.02	0.00	0.00	0.58	0.00	0.00	0.03					
247	testcalc HSIavgsng	0.02	0.01	0.35	0.07	0.06	0.00	0.28	0.03	0.01	0.05					
248																
249	Test calculation: ave	erage snag den	sity =	0.90												
250	Test calculation: ave	erage SI(V1-hw)=	0.18												
251	using avg snagSI															
252																
253	Plot:	11	12	13	14	15	16	17	18	19	20	21				
254	trans1length	100	100	100	100	100	150	100	80	100	80	80				
255	trans2length	100	100	100	100	100	120	100	75	90	80	80				
256	plot10"snag	3	2	0	0	1	1	0	0	0	0	0				
257	V1-snag/ac	4.4	2.9	0.0	0.0	1.5	1.5	0.0	0.0	0.0	0.0	0.0				
258	SI(V1-hw)	0.87	0.58	0.00	0.00	0.29	0.29	0.00	0.00	0.00	0.00	0.00				

	А	В	C	D	E	F	G	Н	I	J	К	L	М	Ν	0	Р
259	meandbhov	5.0	12.5	14.0	7.7	12.5	25.0	12.3	17.0	5.7	17.9	10.6				
260	SI(V2-hw)	0.00	0.65	0.86	0.00	0.65	1.00	0.62	1.00	0.00	1.00	0.37				
261	SIN	0.87	1.07	0.65	0.00	0.78	1.04	0.46	0.75	0.00	0.75	0.28				
262	Testcalc SINavgsng	0.18	0.66	0.83	0.18	0.66	0.93	0.64	0.93	0.18	0.93	0.46				
263	SI(V3-hw)	0.50	1.00	1.00	0.72	1.00	1.00	1.00	1.00	0.50	1.00	1.00				
264	cancovtree1	30	20	0	30	0	10	0	15	0	0	10				
265	cancovtree2	0	20	0	20	10	20	25	40	0	5	40				
266	cancovtree%total	15	20	0	25	5	11	13	35	0	3	31				
267	SI(V4-hw)	0.00	0.07	0.00	0.14	0.00	0.00	0.00	0.29	0.00	0.00	0.23				
268	SIC	0.00	0.07	0.00	0.10	0.00	0.00	0.00	0.29	0.00	0.00	0.23				
269	HSI(hw)	0.00	0.08	0.00	0.00	0.00	0.00	0.00	0.22	0.00	0.00	0.06				
270	testcalc HSIavgsng	0.00	0.05	0.00	0.02	0.00	0.00	0.00	0.27	0.00	0.00	0.11				
271																
272	Test calculation (ave	erage snag den	sity)	0.90												
273	associated snag SI(V	/1-hw)		0.18												
274																
275	Summary of HEP:	HSImean	HSImax	HSImin												
276	Model															
277	YellowWarblerMod	0.64	1.00	0.21												
278	YellowWarblerOrig	0.83	1.00	0.30												
279	RipSongbirdGuild	0.64	0.95	0.07												
280	RipForestCovertyp	0.73	0.87	0.37												
281	DownyWoodpckr	0.23	0.87	0.00												
282	HairyWoodpckr	0.06	0.58	0.00												
283	Hwtestcalcavgsnag	0.06	0.35	0.00												
284																
285	Area estimate (roug	gh, average wid	th X 300 ft,	, summed)												
286	Plot	1		2		3		4		5		6		7		
287	transect	1	2	1	2	1	2	1	2	1	2	1	2	1	2	
288	length	65	100	100	100	120	100	100	100	100	100	100	100	100	100	
289	area, acres	0.57		0.69		0.76		0.69		0.69		0.69		0.69		
290	Plot	8		9		10		11		12		13		14		
291	transect	1	2	1	2	1	2	1	2	1	2	1	2	1	2	
292	length	100	100	60	50	100	100	100	100	100	100	100	100	100	100	
293	area, acres	0.69		0.38		0.69		0.69		0.69		0.69		0.69		
294	Plot	15		16		17		18		19		20		21		
295	transect	1	2	1	2	1	2	1	2	1	2	1	2	1	2	
296	length	100	100	150	120	100	100	80	75	100	90	80	80	80	80	
297	area, acres	0.69		0.93		0.69		0.53		0.65		0.55		0.55		

	А	В	С	D	E	F	G	Н	I	J	К	L	М
1	THIS IS TH	E "TreeHts"	TAB										
2	Tree heigh	t calculatio	n for Ripari	an Songbird	d model, va	riable V3; F	Riparian For	est Cover T	ype model	variable V1	1		
3	for Decem	ber 2021 H	EP of Lower	^r San Joaqu	in River Fea	asibility Stu	dy, Reach T	S_30_L					
4	note: meth	nod identifi	er c, refers	to clinomet	ter, calculat	ed in field;	v means vi	sual estima	te by eye				
5	note: some	e numbers	represent "	synthetic" v	values to re	flect visual	estimates i	recorded or	n data shee	ts and verif	ied by phot	os	
6	Data sheet		1	2	3	4	5	6	7	8	9	10	11
7			14	55	30	55	29	53	10	20	25	18	30
8			60	16	47	35	30	25	10	21	25	22	25
9			20	16	25		25	26	10	30			30
10			22	18	41			27	40	25			25
11			20	18				28	30	20			
12			20	20				29	18	25			
13			20	20				30	15				
14	Ht feet (V1	RFCT)	25.1	23.3	35.8	45.0	28.0	31.1	19.0	23.5	25.0	20.0	27.5
15	Ht meters	(V3 RSG)	7.7	7.1	10.9	13.7	8.5	9.5	5.8	7.2	7.6	6.1	8.4
16													
17	Data sheet		12	13	14	15	16	17	18	19	20	21	
18			33	38	25	25	15	30	45	21	18	20	
19			20	25	25	25	12	35	25	14	22	18	
20			20	14	20	30	35	20	25	15	48	35	
21			20	20	20	22	22	20	40	20	28	20	
22			20	30	20	22	40	44	25	13	25		
23			20			12	25	20		18			
24			25			55		20		20			
25						40		20		25			
26						25		20					
27								20					
28								20					
29								25					
30								25					
31													
32	32 Ht feet (V1 RFCT) 21.3 23.3 20.7 27.1 23.6 24.0 29.7										26.8	22.8	
33	Ht meters	(V3 RSG)	6.5	7.1	6.3	8.3	7.2	7.3	9.0	5.6	8.2	6.9	

	А	В	С	D	E	F	G	Н		J	К	L	М	N	0
1	THIS IS TH	E "Species"	TAB												
2	This TAB r	ecords the	species ob	served in ea	ach plot:										
3	Plot:	1		2		3		4		5		6		7	
4		BB		BB		BB		BB		BB		BB		buttonwill	ow
5		ash		willow		willow		red willow	1	red willow		willow		BB	
6		willow		buttonwill	ow	buttonwill	ow	silver willo	W	silver willow		elderberry		red willow	
7		unk. comp	d leaf			walnut		buttonwillow		buttonwillow		silver willow		unid hangi	ng seed
8								walnut						green unid Fig?	
9															
10	Plot:	8		9		10		11		12		13		14	
11		buttonwillow buttony		buttonwill	low BB			california	rose	buttonwill	ow	buttonwill	ow	BB	
12		red willow		red willow		buttonwill	ow	willow		BB		hackberry		silver willow	
13		silver willo	w	compnd le	ompnd leaf unid u		unid willow			red willow		silver willow		red willow	
14		BB		red oak se	edling	red willow				valley oak		red willow	1	unid	
15		Fig				elderberry						unk browr	nfuzzybush	compnd le	af unid
16						unid near	top							unk brown	fuzzybush
17														buttonwill	ow
18															
19	Plot:	15		16		17		18		19		20		21	
20		red willow		silver willo	W	buttonwill	ow	willow		valley oak		willow1		pecan	
21		BB		live oak		silver willo	W	buttonwill	ow	willow		willow2		valley oak	
22		buttonwill	ow	buttonwillow				valley oak		2nd willov	/ spp	BB		willow	
23		2nd willow	/ spp	BB				BB		unid treev	vithgalls	pecan		BB	
24		cork oak		coyote bus	sh			2nd willow	v spp	fig		live oak		unid hanging seed	
25		black locus	st	walnut						live oak		valley oak		live oak	
26		walnut								BB					

	А	В	С	D	E	F	G	Н	I	J	К	L	М	N	0	Р
1	THIS IS THE	E "BasalAre	a" TAB													
2	Note: Basa	l Area was	determined	d from DbH	measurem	ents of larg	ger trees, plus	estimates	of stem nu	mber X app	roximate D	bH of dens	e stems			
3	this calcula	ition can be	e seen in th	e cells for r	ows "BA ft/	/ac", record	led exactly as	noted in fie	eld on data	sheets.						
4	Note: over	story trees	shown in b	old												
5	Note: plots	5 2, 4, and 5	5, were not	done by st	em count d	ue to extre	mely high will	low density	, in these p	lots, estima	ated 3 or 6	inches				
6		per square	yard (9 sq	ft), and app	olied that d	ensity to th	e shrub portio	on of the pl	ot, that is 3	800 ft x shrເ	ub cover in	V1-yellow	warbler mo	odel		
7		to get an e	stimate of l	basal area i	in feet, per	acre										
8	Note: miss	ing data/no	ot measured	d in plot 10	, so assume	ed 3"/yard X	K 50 ft shrub o	cover avera	ge / 9 ft pe	r yard x (30	,000 plot s	ize/43,560	sq ft per ad	cre)		
9		estimate b	ased on fie	ld photos 1	.96, 197, 19	8										
10	Note: some	e plots (2,4	,5) where a	verage ste	m densities	per square	meter were i	included, yi	elded very	large basal	areas, and	may be ove	erestimate	S		
11	NOTE: 4/1	5/22 - SON	E BASAL AF	REAS ARE N	1ISRECORDI	ED AS SUM	OF DIAMETER	RS, THESE II	NDIVIDUAL	DIAMETER	S MUST BE	CONVERTE	D TO AREA	AS BEFORE S	SUMMING	
12	NOTE: 4/27	7/22 - ALL I	BASAL AREA	AS CHECKED	D, RECALCU	LATED, RES	UME EDITING	6/24/22								
13	Plot:	1	2	3	3-BA sq ft	4	5	6	7	8	9	10				
14		9	8000	26	3.687008	30	4	20	10	6	8	15				
15		10		16	1.396263	7	4	6	15	6	20	10				
16		10		16	1.396263	4	6	6		6	10					
17		6		16	1.396263	4		6		6	10					
18				14	1.069014	6		6		6	8					
19				4	0.087266	6		6		6						
20				4	0.087266	8		6		6						
21				11	0.659953	7		6								
22				15	1.227185	6		48								
23				16	1.396263	10										
24				60												
25						14000	16000				40					
26					12.40275											
27	Basal Area	estimation	notes for p	olots 1-10:												
28	Note: all so	quare inche	s linear cor	nverted to s	square feet	by dividing	by 144									
29	plot 1: esti	mate wood	led norther	n half of sit	te is 8" per	100 sq ft, o	r 960" (80') B	A, site area	is ~.57 ac (300*(65+1	00/2)					
30		1/2 of site	is 150 x 80	feet wide =	= 12,000 sq	ft so if 8" p	oer 100 feet, t	hat is 960"	BA (or 960	/144= 6.7 s	q ft) in who	ole plot.	BA per ac	= 6.7/.57=1	1.7'	
31	plot 2: not	e estimate	wooded are	ea, 80% of	site (24,000) sq ft, 2667	7 sq yds) has 3	3"(3/144 =	.0208') BA I	per yard, or	667 sq ft E	3A; 43560/3	30000*55.5	5=80.5'/ac E	BA	
32	plot 3: dat	a sheets re	corded 10	tree diame	ters, and "2	x20 - 2x40'	' notation, me	eaning 2" X	20 to 40 w	illow shrub	s, and "est,	several fee	et/10th acr	e"		
33		Total for tr	ees only is	12.4 ft sq;	but if est, a	bove is for	willows, that	is 3 ft/tentł	n acre is 30	sq feet/ac	BA; overall	guess 43.4	/ac BA			
34	plot 4: data	a sheet not	es "likely hi	igh, 6" per :	sq M", whic	h is 0.0417:	'sq ft; assumir	ng 80% (ave	erage of "al	l woody", R	SG V6) red	uces this to	0.033 ft B	A per 9 sq f	t	
35	5 .033 ft/sq M ~.033 ft/9 sq ft; expanding to an acre 0.033/9*43560 sq ft/ac = 161.5'/ac BA															
36	5 plot 5: data sheet notes " est thick willow stems 6" per sq M + trees. Likely high [BA]." This would calculate out to at least plot 4, or more; 161.5' ac BA															
37	7															
38	plot 6: data	a notes "15	willows x 6	5" = 90 sq ii	n trees alon	e + willows	; dense willow	ws 1/3 site	6+"/sqM";	20" willow,	willow 6-8	stems 6"				
39		species	diameter	BA	assumption	n										

	А	В	С	D	E	F	G	Н		J	К	L	М	N	0	Р
40		willow	6	1.374447	7 stems th	is size										
41		willow	20	2.181662												
42		thicket		20.83333	((100x45/	9)x 6)/144 =	:	20.83333								
43		total BA in	plot	24.38944		total per a	cre	35.41347								
44		(300 x45/9)/3x 6/144	=46.3 sq ft	BA in 30,00	00 sq ft site	. 46.3*43560/	/30000=67.	2/ac BA							
45	plot 7: dat	a notes "4-0	6"/10 sq M	for 1/2 site	e; 0"/sq M	[for other 1	/2?]";									
46		data note	calculation,	assume "1	0 sq M" is	90sqft, not	900.									
47		so overall i	s 2"/sqM; 2	2"/144=.01	4'; .014/9*	43560=67.8	3'/ac BA									
48		overall ave	rage of "4-	6" and zerc	, is 2.5", (5	+0)/2										
49		estimate c	alculation c	of BA per sq	l ft, therefo	ore, is (2.5/1	.44)/90	0.000193								
50		the BA for	1 acre is th	e above pe	r foot x 43	560		8.402778								
51		this was or	ne of the fe	w sites witl	h a cruz-all	estimate, 2	x 5 BAF, or 1	0'/ac BA								
52		select the	lower of th	e two estin	nates for th	e HEP										
53	plot 8: not	es say "not	possible ~1	L x 5?", in li	kely refere	nce to a cru	iz-all measure	ment; the	seven, 6" tr	ees are 28'	' BA each o	r 196" total				
54		169"/144=	1.36 sq ft i	n the plot.	1.36*4356	0/30000=1.	98'/ac BA									
55	plot 9:	notes indic	ate 10, 4" s	stems; that	s pi x 2 squ	ared,x 10, o	or 125.6 inche	es or 0.872'	BA in plot (125.6/144); 0.872*43	560/30000	=1.27/ac B	A		
56		individual	trees meas	ured additi	onally											
57		species	diameter	BA	assumptio	n										
58		ash	8	0.349066												
59		buttonW	20	2.181662	multiple st	tems of sam	ne species									
60			10	0.545415												
61			10	0.545415												
62			8	0.349066												
63		total BA in	plot	3.970624		total per a	cre	5.765346	plus 1.27 a	bove =	7.035346					
64	plot 10: "r	nissing data	a", post fiel	d photo int	erp: min 2	" dia/yd=(~3	3" BA) per yar	d x 50' woo	ded x 300'	long /144 s	sq in per ft)	/9 ft per yd	*43560/3	0000 = 50.4	'/ac BA	
65	Plot:	1	2	3	4	5	6	7	8	9	10					
66	meanDbH	8.8	1.0	13.8	8.8	4.7	6.5	12.5	6.0	1.3	12.5					
67	BA ft/ac	11.7	80.5	43.4	161.5	161.5	35.4	8.4	2.0	7.0	50.4					
68	SI(V1-dw)	0.27	1.00	0.99	0.50	0.50	0.80	0.19	0.05	0.16	1.00					
69																
70	Plot:	11	12	13	14	15	16	17	18	19	20	21				
71		6	14	10	4	16	16	8	14	6	11	15				
72		6	13	9	18	8	29	8	12	5	18	10				
73		4	32	12	6	13	30	8	18	6	34	8				
74		3	4	8	6	8		20	16		22	11				
75		3	4	10	6	7		12	25		28	21				
76		8	8	15	6	23		6			26	11				
77				30				24			22	9				
78				18							6	9				

	А	В	С	D	E	F	G	Н		J	К	L	М	N	0	Р
79											6	9				
80											6	8				
81												8				
82												8				
83	meanDbH	5.0	12.5	14.0	7.7	12.5	25.0	12.3	17.0	5.7	17.9	10.6				
84	BA ft/ac	8.6	32.7	31.1	6.9	15.0	26.1	33.9	13.1	6.2	34.2	31.1				
85	SI(V1-dw)	0.20	0.74	0.71	0.16	0.34	0.59	0.77	0.30	0.14	0.78	0.71				
86	Basal Area	estimation	notes for	olots 11-21	:											
87	plot 11: no	otes for this	s plot have	a list of spe	ecies and di	ameters, ai	nd a guess of	"10-20" for	1/3 plot",	likely in ref	erence to s	um of diam	eters			
88		photos sho	ow a foregr	ound of ros	se, with suf	ficiently sep	parated trees	in the back	ground to o	conclude th	e stem/dia	meter cour	ts are accu	rate		
89		species	diameter	BA	assumptio	n										
90		walnut	8	0.349066	individual											
91		buttonW	10	0.545415	individual											
92		buttonW	5	0.545415	20 inch su	m of diame	ters recorded	, guess 5 in	ches, 4 ste	ms						
93		hollyoak	6	0.19635	individual											
94		willow	10	1.090831	individual											
95		willow	8	1.047198	25 inch su	m of diame	ters recorded	, guess 8 in	ches, 3 ste	ms						
96		willow	4	0.698132	30 inch su	ch sum of diameters recorded for bush, guess 4 inches, 8 stems										
97		elderberry	8	0.349066	individual	dual										
98		elderberry	3	0.147262	individual,	overstory r	measurement	says "4,3,3	" so guess	3 inches, 3	stems					
99		3-4 willow	5	0.545415	20 inch su	m of diame	ters recorded	, "3-4 willo	ws, 20' tota	al", guess 5	inches 4 st	ems				
100		2 willows	5	0.409062	recorded "	2 more wil	lows, 15" tota	l", guess 5	inches, 3 st	ems						
101		total BA in	plot	5.923211		total per a	cre	8.600503								
102	plot 12: no	tes for this	plot have a	a list of dia	meters, or o	diameter cla	asses and nun	nbers of ste	ems, by spe	cies.						
103		species	diameter	BA	assumptio	n										
104		willow	14	1.069014												
105		willow	13	0.921752												
106)	willow	32	5.585054												
107	r	willow	4	0.087266												
108		willow	20	8.726646	4 of these											
109		willow	20	2.181662	1 of these											
110		willow	5	0.545415	4 of these											
111		buttonW	20	2.181662	1 of these											
112		buttonW	15	1.227185	1 of these											
113		total BA in	plot	22.52566		total per a	cre	32.70725								
114	plot 13:	species	diameter	BA	assumptio	n										
115		buttonW	6	0.19635	5 of these											
116		hackberry	18	1.767146												
117		willow	20	2.181662												

	А	В	С	D	E	F	G	Н		J	К	L	М	Ν	0	Р
118		buttonW	6	0.785398	4 of these											
119		hackberry	9.5	0.984475	2, actually	2 stems 10) and 9"									
120		buttonW	12	1.570796	24", assum	าe 2 12"										
121		buttonW	24	1.668971	24" assum	e 15 and 9	ii									
122		willow	45	12.27185	30 and 15'	I										
123		total BA in	plot	21.42664		total per a	cre	31.11149								
124	plot 14:	notes - ree	constructed	d/estimated	d stems fro	m basal are	a and oversto	ory dbh lists	as best po	ssible						
125		buttonW	4	0.349066	4 of these											
126		buttonW	8	0.785398	3 of these,	20" total,	8" x2, 4"x1									
127		willow		0.19635	2,4, and 4'	'; 10" total										
128		willow	15	1.227185	individual											
129		willow	18	1.767146	individual											
130		thicket	2	0.261799	25" total d	lia recordeo	d; assume 12,	, 2 inch stem	IS							
131		fuzzytree	6	0.19635	individual											
132		total BA in	plot	4.783293		total per a	cre	6.945341								
133	plot 15	notes - ree	constructed	d/estimated	d stems fro	m basal are	a and oversto	ory dbh lists	as best po	ssible						
134		species	diameter	BA	assumptio	n										
135		corkoak	16	1.396263												
136		willow	8	0.370882	8 and 2" st	tems										
137		willows	1	0.1309	24x1" ster	ns										
138		buttonW	6	0.19635												
139		willow	20	2.181662												
140		redberry	18	1.767146												
141		willows	1	0.163625	30x1" ster	ns										
142		walnut	13	2.405282	13 and 12	' stems										
143		locust	7	0.267254												
144		unid	23	2.885247												
145		total BA in	plot	11.76461		total per a	cre	17.08221								
146	plot 16	notes - ree	constructed	d/estimated	d stems fro	m basal are	a and oversto	ory dbh lists	as best po	ssible						
147		willow	16	1.396263												
148		willow	29	4.586943	recorded '	'28-30" will	low"; assume	29								
149		willow	30	4.908739	recorded '	'28-32" will	low"; assume	30								
150		willow	1	1.041667	100's of 1'	' stems; ass	sume 1.5" BA	per stem								
151		buttonW	8	0.349066												
152		walnut	20	2.181662												
153		walnut	18	1.767146												
154		walnut	18	1.767146												
155		total BA in	plot	17.99863		total per a	cre	26.13401								
156	plot 17	notes - ree	constructed	d/estimated	d stems fro	m basal are	a and oversto	ory dbh lists	as best po	ssible						

	А	В	C	D	E	F	G	Н	I	J	К	L	М	Ν	0	Р
157		species	diameter	BA	assumptio	n										
158		willow	30	14.72622	3, 9" stem	S										
159		willow	2	1.636246	thicket, as	sume 25, 2	inch stems									
160		willow	8	0.349066												
161		liveoak	20	2.181662												
162		willow	1	0.327249	thicket, as	sume 20, 1	inch stems									
163		buttonW	24	3.141593												
164		buttonW	18	0.981748	12, 6 inch	stems tota	18 dia									
165		total BA in	plot	23.34378		total per a	cre	33.89517								
166	plot 18	notes - re	constructed	d/estimated	d stems fro	m basal are	a and oversto	ory dbh lists	as best po	ssible						
167		species	diameter	BA	assumptio	n										
168		willow	2	0.392699	thicket, 35	" total , 18	, 2 inch stems									
169		buttonW	14	1.069014	each stem	in two bus	hes measured	l individuall	у							
170			12	0.785398												
171			8	0.349066												
172			16	1.396263												
173		buttonW	5	0.136354												
174			3	0.049087												
175			3	0.049087												
176			3	0.049087												
177			8	0.349066												
178		valloak	25	3.408846												
179		willow	2	0.327249	thicket, 30	" total , 15	, 2 inch stems									
180		willow	5	0.681769	small bush	i, 25" dbh t	otal, assume !	5 stems 5"								
181		total BA in	plot	9.042987		total per a	cre	13.13042								
182	plot 19	notes - re	constructed	d/estimated	d stems fro	m basal are	a and oversto	ory dbh lists	as best po	ssible						
183		species	diameter	BA	assumptio	n										
184		willow	5	0.818123	"large thic	ket"; 30", a	ssume six, 5 i	nch stems								
185		willow	2	0.283616	thicket; 25	", assume	13, 2 inch ster	ns								
186		valloak	3	0.049087	individual	stems on t	wo trees meas	sured								
187			6	0.19635												
188			4	0.087266												
189		valloak	6	0.19635	individual											
190		willow	1	0.109083	thicket; 20)"; smaller s	stature, assum	ne 20, 1" ste	ems							
191			1	0.109083	thicket; 20)"; smaller s	stature, assum	ne 20, 1" ste	ems							
192			1	0.109083	thicket; 20)"; smaller s	stature, assum	ne 20, 1" ste	ems							
193			1 0.109083 thicket; 20"; smaller stature, a						ems							
194		fig	20	2.181662	individual											
195		total BA in	plot	4.248786		total per a	cre	6.169237								
	А	В	C	D	E	F	G	Н	I	J	K	L	М	Ν	0	Р
-----	---------	-------------	-------------	-------------	-------------	---------------	----------------	---------------	-------------	--------	---	---	---	---	---	---
196	plot 20	notes - re	constructed	d/estimated	l stems fro	m basal are	a and oversto	ory dbh lists	as best pos	ssible						
197		species	diameter	BA	assumptio	n										
198		pecan	11	0.659953												
199		willow	18	1.767146	very large	willow with	n many individ	dually measu	ured stems							
200			34	6.305002												
201			22	2.63981												
202			28	4.276057												
203			26	3.687008												
204			22	2.63981												
205		valloak	6	0.19635												
206		liveoak	6	0.19635												
207		pecan	12	0.785398												
208		willow	1	0.218166	thicket; 40	; assume 4	40, 1" stems									
209		willow	1	0.163625	thicket; 30)"; assume 3	30, 1" stems									
210		total BA in	plot	23.53467		total per a	cre	34.17235								
211	plot 21	notes - re	constructed	d/estimated	l stems fro	m basal are	a and oversto	ory dbh lists	as best pos	ssible						
212		species	diameter	BA	assumptio	n										
213		valloak	15	1.227185	individual											
214		pecan	10	0.545415	two stems	, measured	individually									
215			8	0.349066												
216		unid	6	1.178097	6, 6" stem	S										
217		corkoak	21	2.405282												
218		corkoak	11	0.659953												
219		pecan	5	0.136354												
220		unid	4	1.570796	18 stems											
221		willow	8	2.792527	large stem	s, 60" , esti	mate 8, 8" ste	ems								
222		total BA in	plot	10.86467		total per a	cre	31.13587								

A B C D E F G H										J	К	L	М	Ν	0	Р	Q	R	S	Т	U
1	THIS IS TH	E "Futures"	ТАВ																		
2	This TAB e	stimates be	st case futi	ures in mitig	ation site,	that could	be theoret	ically used	to estimat	e mitigatior	ratio.										
3	Assume a	site, such as	agricultur	e, which has	s no value/	woody cur	rently.			_											
4			-																		
5	Warbler N	1odel - Best	Case Scena	ario							Warbler N	Nodel - Wor	se Case Sce	enario							
6	V1-shrub d	cover: estim	ate this wo	ould be optir	mized (60-	80%) in 5 y	ears; with l	ots of plar	nting/water	ing	V1-shrub	cover: maxe	es out at 40	% due to wa	ter variab	ility/dieoff	after year	5			
7	V2-shrub l	neight: estin	nate it wou	Ild take 5 ye	ars to get	to 2M tall a	average, wit	th waterin	g, ideal site		V2-shrub	height: 1.2	M max due	to alot of he	rbaceous		,				
8	V3-percen	t deciduous	shrub cov	er: presume	this would	d be 100%,	determine	d by planti	ing pallette		V3- perce	nt deciduou	is shrub cov	ver: same as	best case						
9	V4-percen	t tall tree co	over, optim	ized at 50-7	5%, is 30 f	eet tall, es	timate 15 ye	ears			V4- perce	nt tall tree o	cover, takes	s longer due	to variab	e water, 40	0% maximu	m			
10			· 1				,				•		,								
11		TY0	TY1	TY5	TY15	TY25	TY51					TY0	TY1	TY5 1	Y15	TY25	TY51				
12	V1	0	0.1	0.6	0.8	0.8	0.8				V1	0	0.1	0.6	0.5	0.5	0.5				
13	V2	0	0.1	2	2	2	2				V2	0	0.1	0.6	1.2	1.2	1.2				
14	V3	0	1	1	1	1	1				V3	0	1	1	1	1	1				
15	V4	0	0	0	0.3	0.5	0.75				V4	0	0	0	0.3	0.4	0.4				
16																					
17	SI(V1)	0.00	0.17	1.00	1.00	1.00	1.00				SI(V1)	0.00	0.17	1.00	0.83	0.83	0.83				
18	SI(V2)	0	0.05	1	1	1	1				SI(V2)	0	0.05	0.3	0.6	0.6	0.6				
19	SI(V3)	0.1	1	1	1	1	1				SI(V3)	0.1	1	1	1	1	1				
20	SI(V4)	0.5	0.5	0.5	0.8	1	1				SI(V4)	0.5	0.5	0.5	0.8	0.9	0.9				
21	HSI-ywm	0.00	0.06	0.71	0.89	1.00	1.00				HSI-ywm	0.00	0.06	0.39	0.63	0.67	0.67				
22	,																				
23	ТҮ	0	1	5	15	25	51				ТҮ	0	1	5	15	25	51				
24	HSIw/o	0.00	0.00	0.00	0.00	0.00	0.00				HSIw/o	0.00	0.00	0.00	0.00	0.00	0.00				
25	, HSI w/	0.00	0.06	0.71	0.89	1.00	1.00				, HSI w/	0.00	0.06	0.39	0.63	0.67	0.67				
26	area w/o	10	10	10	10	10	10				area w/o	10	10	10	10	10	10				
27	area w/	10	10	10	10	10	10				area w/	10	10	10	10	10	10				
28	HUs w/o		0	0	0	0	0				HUs w/o		0	0	0	0	0				
29	HUs w/		0.322749	15.43313	80.0767	94.72136	260				HUs w/		0.322749	9.036961	50.98769	65.1638	174.4133				
30	AAHUs wit	thout					0				AAHUs wi	ithout					0				
31	AAHUs wit	th					8.834391				AAHUs wi	ith					5.880873				
32	change du	e to project					8.834391				change du	ue to projec	t (mitigatio	n gain)			5.880873				
33														37							
34	ТҮ	0	1	5	15	25	51														
35	HSIw/o	0.64	0.64	0.64	0.64	0.64	0.64														
36	HSI w/	0.64	0.00	0.00	0.00	0.00	0.00														
37	, area w/o	13.88	13.88	13.88	13.88	13.88	13.88														
38	area w/	13.88	13.88	13.88	13.88	13.88	13.88												1		
39	, HUs w/o		8.867974	35.4719	88.67974	88.67974	230.5673														
40	HUs w/		4.433987	0	0	0	0														
41	, AAHUs wit	thout		-			8.867974														
42	AAHUs wit	th					0.086941														
43	43 change due to project (project impact loss) -8.78103																				
44									Compensa	ation Ratio	estimate: C	CR = loss at i	mpact site/	gain at mitig	ation site	X 10/13.88	8 acres				
45	l set the a	rea of the m	itigation si	te at 10 acre	es: so this	suggests th	e habitat va	alue	Best case	scenario: Cl	R =	0.71611			,	2, _ 20.00					
46	is compen	sated rough	ly at a ratio	of slightly	less than 1	1:1 with ne	rfect mitiga	tion	Worst cas	e scenario:	CR =	1.075757									
47						pc						, 5, 57									
48					comnensat	tion area b	est case.	9.94	L												
49					pensa			5.54													
50				(compensat	tion area w	orst case:	14,93151													
51																					
52 Riparian Songbird Model - best case scenario											Riparian S	Songbird Mo	del - worst	case scenar	io						

	А	В	С	D	E	F	G	Н	I	J	K	L	М	Ν	0	Р	Q	R	S	Т	U
53	V1- % shrul	b cover, 1-3	3M;optima	l 50-75%; this	s will take	10 years t	o achieve				V1 - takes	14 years, m	naxes out at	: 50%							
54	V2- % tree	cover, 3+M	I; optimal 5	0-75%; takes	about 15	years					V2 - takes	15 years, m	naxes out at	: 40%							
55	V3- ht of tr	ees. optima	al 6+M: tak	es about 10 v	/ears. wit	, h watering					V3 - takes	14 years to	reach 6+M								
56	V4- lavering	g category:	1-none. 2-	low shrub. 3-	-tall shrub	s. 4- trees	onlv. 5- mul	tiple lave	rs: TY1 low	only (.3): T	' Y5-51 - mu	, Itiple (1.0)		V4 - not all "	5". some	"2"."3"."4"	: max SI .7				
57	, V5- snags 4	"+: optim	al at 3+/ac	: none for TY	0-14: ther	, optimal T	Y15-51	. ,	,		V5 - not o	ptimal throu	ughout: ma	x average is 1	, L.2 snags/	ac	,				
58	V6- % of sit	te as wood	v riparian:	, TY1-5%: TY5-	30%: TY10)-50%: TY1	5to51-75%				V6 - lower	r. max is 60%	%		0-,						
59			/										-								
60	ТҮ	0	1	5	10	14	15	51			ТҮ	0	1	5	10	14	15	51			
61	V1	0	10	30	50	50	60	75			V1	0	10	30	40	50	50	50			
62	V2	0	0	0	30	30	50	75			V2	0	0	0	30	40	40	40			
63	V3	0	1	3	6	6	6	6	;		V3	0	1	3	5	6	6	6			
64	V4	1	2	3	5	5	5	5			V4	1	2	3 (a	issume SI	of 0.7, mix	of categorie	es 2-5)			
65	V5	0	0	0	0	0	3	3			V5	0	0	0	0	0	1.2	1.2			
66	V6	0	5	30	50	75	75	75			V6	0	5	30	50	60	60	60			
67																					
68	SI(V1)	0	0	0.5	1	1	1	1			SI(V1)	0	0	0.5	0.75	1	1	1			
69	SI(V2)	0	0	0	0.5	0.5	1	1			SI(V2)	0	0	0	0.5	0.75	0.75	0.75			
70	SI(V3)	0	0	0.4	1	1	1	1			SI(V3)	0	0	0.4	0.8	1	1	1			
71	SI(V4)	0	0.3	0.5	1	1	1	1			SI(V4)	0	0.3	0.5	0.7	0.7	0.7	0.7			
72	SI(V5)	0.00	0.00	0.00	0.00	0.00	1.00	1.00)		SI(V5)	0.00	0.00	0.00	0.00	0.00	0.40	0.40			
73	SI(V6)	0.00	0.00	0.26	0.47	0.74	0.74	0.74			SI(V6)	0.00	0.00	0.26	0.47	0.58	0.58	0.58			
74	HSI-rsg	0.00	0.00	0.06	0.22	0.34	0.74	0.74			HSI-rsg	0.00	0.00	0.06	0.18	0.26	0.37	0.37			
75											-										
76	TY	0	1	51																	
77	HSIw/o	0.64	0.64	0.64																	
78	HSI w/	0.64	0	0.00																	
79	area w/o	13.88	13.88	13.88																	
80	area w/	13.88	13.88	13.88																	
81	HUs w/o		8.9	445.5																	
82	HUs w/		4.5	0.0																	
83	AAHUs with	hout		8.9																	
84	AAHUs with	h		0.1																	
85	change due	e to project		-8.8																	
86																					
87	TY	0	1	5	10	14	15	51			ТҮ	0	1	5	10	14	15	51			
88	HSIw/o	0	0	0	0	0	0	0			HSIw/o	0	0	0	0	0	0	0			
89	HSI w/	0.00	0.00	0.06	0.22	0.34	0.74	0.74			HSI w/	0.00	0.00	0.06	0.18	0.26	0.37	0.37			
90	area w/o	10	10	10	10	10	10	10)		area w/o	10	10	10	10	10	10	10			
91	area w/	10	10	10	10	10	10	10)		area w/	10	10	10	10	10	10	10			
92	HUs w/o		0	0	0	0	0	0)		HUs w/o		0	0	0	0	0	0			
93	HUs w/		0.00	1.25	7.10	11.32	5.41	265.26	5		HUs w/		0.00	1.25	6.12	8.78	3.15	134.16			
94	AAHUs with	hout						0.00)		AAHUs wi	ithout						0.00			
95	AAHUs with	h						5.69			AAHUs wi	ith						3.01			
96	change due	e to project						5.69			change du	ue to project	t					3.01			
97																					
98	In this case	it would ta	ake more th	han 10 acres	to compe	nsate the l	osses of valu	е		Compensa	ation Ratio	estimate: Cl	R = loss at i	mpact site/ga	ain at miti	gation site	X 10/13.88	acres			
99	to riparian :	songbird gu	uild; the es	timated com	pensation	area woul	d be:	15.50)	Best case	scenario: C	CR =	1.11646								
100	which is so	mewhat m	ore than 1:	1 with perfec	t mitigati:	on				Worst cas	e scenario:	CR =	2.112309								
101	with "worst	t case" futu	ires; the es	timated com	pensatior	area wou	d be:	29.31885													
102																					
103	Riparian Fo	orest Cover	Type - Best	t Case Scenar	io					Riparian F	orest Cove	r Type - Wo	rst Case Sce	enario							
104																					

	А	В	С	D	E	F	G	Н	I	J	К	L	М	Ν	0	Р	Q	R	S	Т	U
105	V1 - tree heig	ght; optin	num 60+ fe	et; takes abo	out 20 years	to get th	is			V1 - tree h	eight; optimu	m 60+ fe	et; max avg	g of 40 feet a	fter 20 yea	rs					
106	V2 - stand wi	idth; opti	mum assun	ned if 70+ fee	et wide site					V2 - stand	width; optimu	um assur	ned if 70+ f	eet wide site	, same as k	est case					
107	V3-tree cano	py closur	e; optimum	n 50-80%, ma	ay barely ge	t there ir	n 20 years			V3-tree ca	nopy closure;	optimur	n 50-80%, s	cenario max	is 40%						
108	V4- # species	s; assume	can be opt	imally plante	ed at 4+ spe	cies, all s	urvive			V4- # speci	ies; 3 of 4 plar	nted spe	cies survive	s							
109	V5 - average	understo	ory density;	optimal 30-6	50% this wil	l evolve d	over time			V5 - averag	ge understory	density;	overshoots	optimum af	ter year 20						
110	TY5=20%; TY	′10-51 - o	ptimal (i.e.,	, 30-60%)						* - discoun	nt overall HSI b	oy 1/3 pe	er model ass	sumes most i	not adjacer	nt to wate	r				
111																					
112	TY	0	1	5	10	15	20	51		ΤY	0	1	5	10	15	20	51				
113	V1	0	3	15	25	35	60	75		V1	0	3	15	25	30	40	40				
114	V2	0	70	70	70	70	70	70		V2	0	70	70	70	70	70	70				
115	V3	0	0	10	30	40	50	60		V3	0	0	10	30	35	40	40				
116	V4	0	4	4	4	4	4	4		V4	0	4	4	3	3	3	3				
117	V5	0	0	20	30	50	60	60		V5	0	0	20	25	50	70	70				
118																					
119	SI(V1)	0.00	0.05	0.25	0.42	0.58	1.00	1.00		SI(V1)	0.00	0.05	0.25	0.42	0.50	0.67	0.67				
120	SI(V2)	0.2	1	1	1	1	1	1		SI(V2)	0.2	1	1	1	1	1	1				
121	SI(V3)	0	0	0.2	0.6	0.8	1	1		SI(V3)	0	0	0.2	0.6	0.7	0.8	0.8				
122	SI(V4)	0	1	1	1	1	1	1		SI(V4)	0	1	1	1	1	1	1				
123	SI(V5)	0.20	0.20	0.73	1.00	1.00	1.00	1.00		SI(V5)	0.20	0.20	0.73	0.87	1.00	0.88	0.88				
124	HSI-rfct	0.10	0.22	0.61	0.81	0.89	1.00	1.00		HSI-rfct*	0.07	0.15	0.41	0.52	0.57	0.59	0.59				
125																					
126	TY	0	1	51																	
127	HSIw/o	0.73	0.73	0.73																	
128	HSI w/	0.73	0	0																	
129	area w/o	13.88	13.88	13.88																	
130	area w/	13.88	13.88	13.88																	
131	HUs w/o		10.1	507.4																	
132	HUs w/		5.1	0.0															_		
133	AAHUs witho	but		10.1																	
134	AAHUs with			0.1																	
135	change due t	to project		-10.0																	
136		-			10	45		F 4						10			F 4				
137		0	1	5	10	15	20	51			0	1	5	10	15	20	51				
138	HSIW/O	0	0	0	0	0	0	0		HSIW/O	0	0	0	0	0	0	0				
139	HSI W/	0.10	0.22	0.61	0.81	0.89	1.00	1.00		HSI W/	0.07	0.15	0.41	0.52	0.57	0.59	0.59				
140	area W/O	10	10	10	10	10	10	10		area w/o	10	10	10	10	10	10	10		_		
141		10	01	01	10	10	01	10			10	01	10	01	10	10	10				
142			1.62	16 72	25 60	U 40 57		210.00				1 00	11 20	U רר כר	0 27.25	10 00	101.20				
143		Nut.	1.02	10.72	50.00	42.57	47.20	210.00			bout	1.08	11.20	23.33	27.35	28.90	0.101				
144		Jui						0.00 8 00			h						5.00				
145	Change due t	o project						0.90			nto project						5.30				
140	change due t	o project	,					8.90		change du	e to project						5.30				
14/	In this case it	would to	aka mara th	an 10 acros	to company	ato tho l	asses of valu			Componen	tion Patio acti	imate: C	R – loss at ir	nnact site/as	in at mitia	ation cito	¥ 10/12 00	acres			
140	to riparian fo		artype: the	estimated co	mensatio			11 20		Bost case of	conario: CP -	mate. C	0 812662	ipact site/ga			A 10/ 13.60				
149	which is com	owhat m	ore than 1.	1 with perfec	t mitigation			11.29		Worst case	$C = \frac{1}{2} C = $	_	1 351252								
150	with "worst a	rase" fut	ires: the er	timated com	nensation	nes woul	d her	18 75677		vvoist tast		-	1.331332								
157		Lase Tull	ines, the es					10.7 0077													
152		dnecker r	nodel - Rec	t Case Scena	rio								odnecker n	nodel - Mors	t Case Scer	ario					
152	V1- Rasal Are	apecker I	ill take awh	ile to mavim	ize (44'/acr	e). Bilecc	is at least 20) vears rer	nains ont	imal through	h TY51 1/1		lower hasa	l area site h	eterngenei	tv limite	max SI to O	7			
155	V2- 6+" snage	s, these t	ake longer	than 4" snag	s: guess 20	vears for	this exercise	will may	out at 1 5	snaøs/ar	\/)) = snags	slightly less	s abundant a	t vear 20 1	0 snags/		• *			
156		s, these t	and longer		., 54035 20	, cars for		.,	541 41 1.5			- 511465	Singing icos				~~				

4 5 7	А	В	С	D	E	F	G	Н		J	К	L	М	Ν	0	Р	Q	R	S	Т	U
157	TV	0	1		10	10	20	F1		T V		1		10	10	20	Г1				
150	Y /1	0		2 10	20	19	20	51			0	1 5	5 10	20	19	20	21				
159	V1 V2	0	0	01	20	40	44	90		V1 V2	0	0	10	20	24	25	51				
161	٧Z	0		0	0	0	1.5	1.5		VZ	0	0	0	0	0	1	L				
162	CI(\/1)	0.00	0.11	0.22	0.45	0.01	1 00	0.07		SI()/1)	0.00	0.11	0.22	0.45	0.55	0.57	0.70				
162	SI(VI)	0.00	0.11	0.25	0.45	0.91	1.00	0.97			0.00	0.11	0.25	0.45	0.55	0.57	0.70				
164	HSI-dw	0.00	0.00	0.00	0.00	0.00	0.30	0.30			0.00	0.00	0.00	0.00	0.00	0.20	0.20				
165		0.00	0.00	0.00	0.00	0.00	0.50	0.50			0.00	0.00	0.00	0.00	0.00	0.20	0.20				
165	ту	0	1	51																	
167	HSIW/0	0.23	0.23	0.23																	
168	HSI w/	0.23	0.25	0.23																	
169	area w/o	13.88	13.88	13.88																	
170	area w/	13.88	13.88	13.88																	
171	HUs w/o	10.00	3.2	160.5																	
172	HUs w/		1.6	0.0																	
173	AAHUs wit	hout	1.0	3.2																	
174	AAHUs wit	:h		0.0																	
175	change du	e to project		-3.2																	
176																					
177	ТҮ	0	1	5	10	14	15	51		TY	0	1	5	10	14	15	51				
178	HSIw/o	0	0	0	0	0	0	0		HSIw/o	0	0	0	0	0	0	0				
179	HSI w/	0.00	0.00	0.00	0.00	0.00	0.30	0.30		HSI w/	0.00	0.00	0.00	0.00	0.00	0.20	0.20				
180	area w/o	10	10	10	10	10	10	10		area w/o	10	10	10	10	10	10	10				
181	area w/	10	10	10	10	10	10	10		area w/	10	10	10	10	10	10	10				
182	HUs w/o		0	0	0	0	0	0		HUs w/o		0	0	0	0	0	0				
183	HUs w/		0.00	0.00	0.00	0.00	1.50	108.00		HUs w/		0.00	0.00	0.00	0.00	1.00	72.00				
184	AAHUs wit	hout						0.00		AAHUs wi	thout						0.00				
185	AAHUs wit	:h						2.15		AAHUs wi	th						1.43				
186	change du	e to project						2.15		change du	e to project						1.43				
187																					
188	Best case i	t would take	more than	10 acres	to compens	sate the los	ses of valu	e		Compensa	tion Ratio es	stimate: Cl	R = loss at i	mpact site/g	ain at miti	gation site	X 10/13.88	acres			
189	to downy v	woodpecker	; the estima	ated comp	ensation a	rea would b	e:	14.81		Best case	scenario: CR	=	1.066869								
190	which is m	ore than 1:1	with perfe	ect mitigat	ion					Worst cas	e scenario: C	CR =	1.600304								
191	Note: this a	assumes hig	her snag de	ensity (1.5	/ac) than se	een natural	(1.08)			Note: low	er overall sna	ag densitie	es possible v	where easer	nents restr	ict woody	plantings/he	eight			
192	which coul	ld occur if la	rger trees v	vere set as	s goal; may	be unrealis ⁻	tic														
193	with "wors	st case" futu	res; the est	imated co	mpensatior	n area woul	d be:	22.21222													
194																					
195	Hairy Woo	dpecker - be	est case sce	nario							I	Hairy Woo	dpecker - w	vorst case so	enario (sh	rub empha	isis, encroacl	nments, co	over/dbh n	nore limited)
196	V1 - snags	>10"; optim	um at 2+/a	cre; begin	to form at	year 20					Ň	V1 - snags	>10"; optin	num at 1/ac	re; begin to	o form at y	ear 30				
197	V2 - mean	dbh, nesting	g, has value	e at 8+ inch	nes (year 15	5), opt at 15	+" (year 25	5)			N N	V2 - mean	dbh, nestin	ng, has value	at 8+ inch	es (year 15	5), opt at 10+	-" due to e	encroachm	ent limits (ye	ear 20)
198	V3 - mean	dbh, cover,	min value S	SI .5, then	increases w	ith dbh 6 to	o 12" (year	s 10 to 20);	max 15 (y	/ear 25+)	l I	V3 - mean	dbh, cover,	, min value S	61 .5 <i>,</i> then i	ncreases v	vith dbh 6 to	10" (year	s 10 to 20)		
199	V4 - % can	opy cover, b	egins to ha	ve value >	15%,then i	ncreases wi	th cover to	o 55% (years	5 to 25),	max 60% (y	/r 51)	V4 - % can	opy cover,	begins to ha	ve value >	15%,then i	ncreases wit	h cover to	o 40% (year	s 5 to 25)	
200																					
201	ΤY	0	1	5	10	15	19	20	25	51		ΤY	0	1	5	10	15	25	29	30	51
202	V1	0	0	0	0	0	0	1	2	2	\	V1	0	0	0	0	0	0	0	1	1
203	V2	0	1	3	6	8	9	12	15	15	\	V2	0	1	3	6	8	9	10	10	10
204	V3	0	1	3	6	8	9	12	15	15	\ 	V3	0	1	3	6	8	9	10	10	10
205	V4	0	0	0	30	40	48	50	55	60		V4	0	0	0	30	35	40	40	40	40
206								0.0	~ ~ ~						~			~		0.0	0.0
207	SI(V1)	0	0	0	0	0	0	0.2	0.4	0.4		SI(V1)	0	0	0	0	0	0	0	0.2	0.2
208	SI(V2)	0.00	0.00	0.00	0.00	0.00	0.14	0.57	1.00	1.00		51(V2)	0.00	0.00	0.00	0.00	0.00	0.14	0.29	0.29	0.29

	А	В	С	D	E	F	G	Н	I	J	К	L	М	N	0	Р	Q	R	S	Т	U
209	SI(V3)	0.50	0.50	0.50	0.51	0.77	0.89	1.00	1.00	1.00		SI(V3)	0.50	0.50	0.50	0.51	0.77	0.89	1.00	1.00	1.00
210	SI(V4)	0.00	0.00	0.00	0.21	0.36	0.47	0.50	0.57	0.64		SI(V4)	0.00	0.00	0.00	0.21	0.29	0.36	0.36	0.36	0.36
211 212	HSI(hw)	0.00	0.00	0.00	0.00	0.00	0.05	0.32	0.66	0.74		HSI(hw)	0.00	0.00	0.00	0.00	0.00	0.03	0.08	0.15	0.15
213	ТҮ	0	1	51																	
214	HSIw/o	0.06	0.06	0.06																	
215	HSI w/	0.06	0	0																	
216	area w/o	13.88	13.88	13.88																	
217	area w/	13.88	13.88	13.88																	
218	HUs w/o		0.9	43.6																	
219	, HUs w/		0.4	0.0																	
220	AAHUs wit	thout		0.9																	
221	AAHUs wit	th		0.0																	
222	change du	le to project	t	-0.9																	
223	Ŭ																				
224	ТҮ	0	1	5	10	15	19	20	25	51		ТҮ	0	1	5	10	15	29	30	25	51
225	HSIw/o	0	0	0		0	0	0	0	0		HSIw/o	0	0	0	0	0	0	0	0	0
226	HSI w/	0.00	0.00	0.00	0.00	0.00	0.05	0.32	0.66	0.74		HSI w/	0.00	0.00	0.00	0.00	0.00	0.03	0.08	0.15	0.15
227	area w/o	10	10	10	10	10	10	10	10	10		area w/o	10	10	10	10	10	10	10	10	10
228	area w/	10	10	10	10	10	10	10	10	10		area w/	10	10	10	10	10	10	10	10	10
229	HUs w/o		0	0	0	0	0	0	0	0		HUs w/o		0	0	0	0	0	0	0	0
230	HUs w/		0.00	0.00	0.00	0.00	0.91	1.80	24.32	181.54		HUs w/		0.00	0.00	0.00	0.00	2.41	0.56	-5.63	38.58
231	AAHUs wit	thout								0.00		AAHUs w	ithout								0.00
232	AAHUs wit	th								4.09		AAHUs w	ith								0.70
233	change du	ie to projec	t							4.09		change d	ue to project								0.70
234																					
235	Best case i	it would tak	e far less th	an 10 acres	to compe	ensate the lo	sses of va	lue				Compens	ation Ratio e	estimate: C	R = loss at in	npact site/	'gain at miti	igation site	X 10/13.88	B acres	
236	to hairy w	oodpecker;	the estimat	ed compens	ation are	a would be:		2.11				Best case	scenario: CR	{ =	0.152019						
237	which is le	ess than 1:1	with perfec	t mitigation								Worst cas	se scenario: (CR =	0.882875						
238	Note: this	assumes hi	gher snag d	ensity (1.5/a	ic) than se	een natural (1.08)					Note: low	ver overall sn	ag densitie	es possible w	here ease	ments restr	rict woody p	plantings/h	leight	
239	which cou	ld occur if l	arger trees v	were set as g	goal; may	be unrealist	ic					Also less	than 1:1 with	n lower fut	ures, althou	gh HSI (0.1	5 after yr 2	5) much be	tter than b	aseline (0.	06)
240	With "wor	rst case" fut	ures; the es	timated com	npensatio	n area would	d be:	12.2543													
241																					
242	Summary	Table of Fu	tures-based	compensati	on area a	nd ratio for	best/wors	e case scer	narios												
243			_	r	nitigation	need n	nitigation	ratio													
244	scenario		best	worst b	est	worst b	best	worse													
245		project	mitigation	mitigation																	
246		IOSS	gain, 10ac	gain, 10ac																	
247		AAHUs	AAHUs	AAHUs			0.70														
248	mWarblr	-8.8	8.8	5.9	9.9	14.9	0.72	1.08													
249	KSG	-8.8	5.7	3.0	15.5	29.3	1.12	2.11													
250		-10.0	8.9	5.4	11.3	18.8	0.81	1.35													
251		-3.2	2.1	1.4	14.8	22.2	1.07	1.60													
1252		-0.9	4.1	0.7	2.1	12.3	0.15	0.88				1									

	Α	В	С	D	E	F	G	Н	-	J	K	L
1	THIS IS THE	E "FuturesE	xcess" TAB									
2	In this TAB	: a simplifie	d future te	st is done. i	in which the	e starting p	oint of the	mitigation	site is adva	nced by 10	vears	
- 2	This scena	rio informs		mitigation	might ann	ly to a futu	re project n	hase or if	mitigation i	s started he	ofore impac	└──── ^ †
1	For the nu	rnoso of thi		it is assume	d the impa	oct cito is ci	nilar to TS	$\frac{1}{20}$ L in has		and impac	+	,c.
4			s dono hu o	reating a T		hich has the		<u></u>	novt high	r TV) in the	"Futuroe" -	L
5	The IU yea		s done by c	reating a T			e same as u		next nighe	r i i i i i i i i i i i i i i i i i i i	Futures	
6	NOTE:	ONLY USINE	g the worse	case scena	irio for miti	gation sites	s, nowever,	in this futu	ire test			
7												
8	10 YEAR H	EADSTART	WORST CAS	SE SHOWN	BELOW							
9	NOTE: pro	ofed 10/31,	/22									
10	THESE ARE	THE RELEV	ANT COLUI	MNS								
11	TO SHOW	VALUE OF N	VITIGATION	N "LEFT OVE	R" OR STA	RTED EARL	Y.					
12												
13	WARBI FR	MODEL										
14	Warhler M	odel - Wor		nario								
15			$\frac{30}{2}$ cut at $\frac{10}{2}$		ator variahi	lity/diaoff /	oftorvoor F					
10						iity/uleon a	aitei year J					
10	vz-snrud n	ieignt: 1.2 r	vi max due	to alot of h	erbaceous						ļļ	-
17	V3- percen	it deciduou	s shrub cov	er: same as	s best case							
18	V4- percen	t tall tree c	over, takes	s longer due	e to variabl	e water, 40	% maximur	n			ļ	ļ
19												
20		TY0	TY1	TY5	TY15	TY25	TY51					
21	V1	0.5	0.5	0.5	0.5	0.5	0.5					
22	V2	1.2	1.2	1.2	1.2	1.2	1.2					
23	V3	1	1	1	1	1	1					
24	V4	03	0.4	0.4	0.4	0.4	0.4					
25	• •	0.5	0.1	0.1	0.1	0.1	0.1					
25	CI()/1)	0.02	0.02	0.02	0.02	0.02	0.02					
20		0.83	0.83	0.83	0.83	0.83	0.83					
27	SI(V2)	0.6	0.6	0.6	0.6	0.6	0.6					
28	SI(V3)	1	1	1	1	1	1					
29	SI(V4)	0.8	0.9	0.9	0.9	0.9	0.9					
30	HSI-ywm	0.63	0.67	0.67	0.67	0.67	0.67					
31												
32	ΤY	0	1	5	15	25	51					
33	HSIw/o	0.00	0.00	0.00	0.00	0.00	0.00					
34	, HSI w/	0.63	0.67	0.67	0.67	0.67	0.67					
35	area w/o	10	10	10	10	10	10					
26		10	10	10	10	10	10					
20		10	10	10	10	10	10					
3/			0		0	0	0					
38	HUS W/		6.51638	26.83282	67.08204	67.08204	1/4.4133					
39	AAHUs wit	hout					0					
40	AAHUs wit	h					6.704443					
41	change du	e to project	: (mitigatior	n gain)			6.704443					
42												
43	ΤY	0	1	5	15	25	51					
44	HSIw/o	0.64	0.64	0.64	0.64	0.64	0.64					
45	HSI w/	0.64	0.00	0.00	0.00	0.00	0.00					
46	area w/o	13 88	13.88	13.88	13.88	13.88	13.88					
<u>4</u> 7	area w/	13.00	12 22	12.00	12 22	12.00	12.00					
10		10.00	2 267074	25 /710	22 67074	22 67074	230 5672					
40			0.00/9/4	55.4/19	00.07974	00.07974	230.3073					
49		h	4.433987	0	0	0	0					
50	AAHUs wit	nout					8.86/974					ļ
51	AAHUs wit	h					0.086941					
52	change du	e to project	: (project in	npact loss)			-8.78103					
53	Compensa	tion Ratio e	stimate: Cl	R = loss at ir	mpact site/	gain at miti	gation site	X 10/13.8 <mark>8</mark>	acres			
54												
55	worst case	scenario, f	uture with	mitigation s	started 10 v	ears prior	to impact: (CR =		0.943612		
56	Compare v	vith worst o	ase scenar	io, future w	, ith mitigati	on started	same time	of impact:	CR=	1.075757		
57				,								
<u> </u>							l		1			1

58 Compensation area worst case, mitigation started 10 yrs before impact: 13.09733 13.09733 60 1 14.93351 14.93351 14.93351 61 1 14.93351 14.93351 14.93351 62 10 print MAK SONGRIP MOORE 1 14.93351 14.93351 14.93351 63 10 prints in started 34.97 marks out at 40% 1 1 1 1 64 12 prints in started 34.97 marks out at 40% 1 1 1 1 65 13 trakes 14 years to reach 6+M 1<		А	В	С	D	E	F	G	Н		J	K	L
SP Comparation area work case, mitigation started same time as impact: 14.93151 14.93151 SP Comparation Solve MODEL C	58	compensat	tion area w	orst case, n	nitigation st	arted 10 yı	rs before in	npact:	13.09733				
60 Image: Constraint Source and Sourc	59	compensat	tion area w	orst case, n	nitigation st	arted same	e time as in	npact:	14.93151				
Tell Reparts Solvid Bild None: Noe	60												
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	61	RIPARIAN	SONGBIRD I	MODEL									
B VI - tasks 14 years, makes out at 30% Image: Solution of the soluti	62	Rinarian Sc	onghird Mo	del - worst	case scena	rio							
10 1 1 1 1 10 1 1 1 1 10 1 1 1 1 1 10 1 1 1 1 1 1 10 1 1 1 1 1 1 1 11 1 0 1 1 1 5 5 1 1 12 2 3 3 3 3 3 1<	62												
01 02<	05	VI - Lakes	14 years, III	axes out at	. 30%								
05 03 14 years to freech b+M 67 VS - not optimal throughout; max average is 1.2 snags/ac 0 68 VC - lower, max is 60% 0 0 70 TV 10 0 00 00 00 14 15 11 71 V1 40 40 40 40 40 72 V2 30 30 30 40 40 40 72 V2 30 30 30 40 40 40 73 V3 5 5 5 6 6 6 74 V4 3 3 3(assume S) of 0.7nk of categores 2-5) 1 1 1 75 V5 0 0 0 0 0 1 1 1 76 V5 0.75 0.75 0.75 0.75 0.75 0.75 81 51 1 1 1 1 1 1 1	64	vz - takes	15 years, m	axes out at	. 40%								
66 VX - not all '5', some 2', '3', '4', 'max Si, 7 Image: Constraint and the component of the componen	65	V3 - takes	14 years to	reach 6+M		<u> </u>							
67 VS - not optimal throughout; max average is 1.2 snage/ac	66				V4 - not all	"5", some	"2","3","4"	; max SI .7				ļ	
68 V6 - lower, max is 60% Image: constraint of the second	67	V5 - not op	otimal throu	ighout; ma	x average is	1.2 snags/	ac						
69 71 V1 40 40 40 50 50 50 50 72 V2 30 30 30 40 40 40 40 70 72 73 73 5 5 5 5 5 5 6 6 10	68	V6 - lower,	, max is 60%	0									
70 Tv 10 10 10 14 15 51 71 V1 40 <t< td=""><td>69</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	69												
Ti V1 40 40 40 50 50 50 72 V2 30 30 30 30 40 40 40 73 V3 5 5 5 5 6 6 74 V4 3 3 3 assume St of 0.7, mix of categories 2.5) 74 V4 3 3 3 assume St of 0.7, mix of categories 2.5) 76 V5 0 0 0 0 0 <td< td=""><td>70</td><td>ΤY</td><td>10</td><td>10</td><td>10</td><td>10</td><td>14</td><td>15</td><td>51</td><td></td><td></td><td></td><td></td></td<>	70	ΤY	10	10	10	10	14	15	51				
72 V2 30 30 30 40 40 40 73 V3 5 5 5 5 6 6 6 74 V4 3 3 (ascume Stof 0.7, mix of categories 2.5) 1.2 1.2 75 V5 0 0 0 0 1.2 1.2 1.2 76 V6 30 30 30 50 60 60 60 77 0 0.5 0.5 0.5 0.75 0.75 0.75 0.75 78 Si(V1) 0.75 0.75 0.75 0.75 0.75 0.75 80 Si(V3) 0.8 0.8 0.8 1 1 1 1 81 Si(V4) 0.7 0.7 0.7 0.7 0.7 1 </td <td>71</td> <td>V1</td> <td>40</td> <td>40</td> <td>40</td> <td>40</td> <td>50</td> <td>50</td> <td>50</td> <td></td> <td></td> <td></td> <td></td>	71	V1	40	40	40	40	50	50	50				
13 V3 5 5 5 5 6 6 6 74 V4 3 3 3 (assume SL of 0.7, mix of categories 2-5)	72	V2	30	30	30	30	40	40	40				
74 V4 3 3 3 (assume SI of 0.7, mix of categories 2-5) 75 V5 0 0 0 1.2 1.2 76 V6 30 30 50 60 60 60 77 78 SI(V1) 0.75 0.75 0.75 1 1 1 78 SI(V2) 0.5 0.5 0.5 0.75 0.75 0.75 80 SI(V3) 0.8 0.8 0.8 1 1 1 81 SI(V4) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 82 SI(V5) 0.00 0.00 0.00 0.00 0.40 0.40 84 HSI-Sig 0.10 0.18 0.26 0.37 0.37 86 TY 0 1 51 <	73	V3	5	5	5	5	6	6	6				
75 V5 0 0 0 0 1	74	V4	3	3	3	(assume SI	of 0.7. mix	of categor	ies 2-5)				
10 10 10 11 11 76 V6 30 30 50 60 60 77 V V V V V V 78 SI(V1) 0.75 0.75 0.75 0.75 0.75 81 SI(V4) 0.7 0.7 0.7 0.7 0.7 81 SI(V4) 0.7 0.7 0.7 0.7 0.7 81 SI(V4) 0.7 0.7 0.7 0.7 0.7 81 SI(V6) 0.00 0.00 0.00 0.40 0.40 83 SI(V6) 0.26 0.26 0.47 0.58 0.58 84 HSI-rg 0.10 0.18 0.26 0.37 0.37 85 V 0.0 1 51 V V V 87 HSiw/0 0.64 0.64 0.64 0.64 V V 91 HUS w/0	75	V5	0	0	0	0	0	1 2	12				
10 10 <th< td=""><td>76</td><td>V6</td><td>30</td><td>30</td><td>30</td><td>50</td><td>60</td><td>60</td><td>60</td><td></td><td></td><td> </td><td></td></th<>	76	V6	30	30	30	50	60	60	60				
1/2 0.75 0.75 0.75 1 1 1 79 Si(V2) 0.5 0.5 0.5 0.75 0.75 0.75 80 Si(V3) 0.8 0.8 0.8 1 1 1 81 Si(V4) 0.7 0.7 0.7 0.7 0.7 0.7 81 Si(V5) 0.00 0.00 0.00 0.40 0.40 0.40 83 Si(V6) 0.26 0.26 0.47 0.58 0.58 0.58 84 HSI-rsg 0.10 0.18 0.26 0.37 0.37 0.7 85 1 1 1 1 1 1 1 1 86 1Y 0 1 51 1	77	v U	50			50	00	00	00			<u> </u>	
10 10 1	70		0.75	0.75	0.75	0.75	-	-	-				
17 y N(x) 0.5 0.5 0.75 0.75 0.75 0.75 0.75 80 SI(V3) 0.8 0.8 0.8 1 1 1 1 81 SI(V6) 0.00 0.00 0.00 0.00 0.40 0.40 0.40 81 SI(V6) 0.26 0.26 0.47 0.58 0.58 0.58 0.58 84 HSI-rsg 0.10 0.10 0.18 0.26 0.37 0.37 0.37 85 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.38 <	78		0.75	0.75	0.75	0.75	1	1	1				
80 SI(V3) 0.8 0.8 0.8 1 1 1 81 SI(V4) 0.7 0.7 0.7 0.7 0.7 0.7 82 SI(V5) 0.00 0.00 0.00 0.00 0.40 0.40 0.40 83 SI(V6) 0.26 0.26 0.47 0.58 0.58 0.58 84 HSI-rsg 0.10 0.10 0.18 0.26 0.37 0.37 85 86 TY 0 1 51 88 HSIw/0 0.64 0.64 81 HSIw/0 0.84 13.88 13.88 91 area w/ 13.88 13.88 13.88 92 HUS w/ 4.5 0.0	79	SI(V2)	0.5	0.5	0.5	0.5	0.75	0.75	0.75				
81 SI(V4) 0.7 0.7 0.7 0.7 0.7 0.7 82 SI(V5) 0.00 0.00 0.00 0.00 0.40 0.40 82 SI(V6) 0.26 0.26 0.26 0.47 0.58 0.58 0.58 84 H5I-rsg 0.10 0.10 0.10 0.18 0.26 0.37 0.37 85 6 7 0.64 0.64 0.64 0.64 0.64 87 H5Iw/o 0.64 0.64 0.64 0.64 0.64 0.64 88 H5I w/ 0.64 0.64 0.64 0.64 0.64 0.64 91 HUS w/o 8.8 13.88 13.88 0.1 0.1 0.1 92 HUS w/ 4.5 0.0 0 0 0 0 0 92 HUS w/ 4.5 0.0 0 0 0 0 0 0 93 AAHUS without 8.9 9 1.1 0.1 0.1 0.1 0.1 0.1 0.1 94 BAHUS without 0.0 0 0 0	80	SI(V3)	0.8	0.8	0.8	0.8	1	1	1			ļ	
82 SI(V5) 0.00 0.00 0.00 0.40 0.40 83 SI(V6) 0.26 0.26 0.47 0.58 0.58 0.58 84 HSI-rsg 0.10 0.10 0.18 0.26 0.37 0.37 85 Image: Constraint of the state of th	81	SI(V4)	0.7	0.7	0.7	0.7	0.7	0.7	0.7				
83 SIV(6) 0.26 0.26 0.47 0.58 0.58 0.58 84 HSI-rsg 0.10 0.10 0.10 0.18 0.26 0.37 0.37 85 86 TY 0 1 51 87 HSiw/o 0.64 0.64 0.64	82	SI(V5)	0.00	0.00	0.00	0.00	0.00	0.40	0.40				
64 HSI-rsg 0.10 0.10 0.18 0.26 0.37 0.37 85	83	SI(V6)	0.26	0.26	0.26	0.47	0.58	0.58	0.58				
85 V 0 1 51	84	HSI-rsg	0.10	0.10	0.10	0.18	0.26	0.37	0.37				
86 TY 0 1 51	85												
87 HSIw/o 0.64 0.64 0.64 0 88 HSI w/ 0.64 0 0.00 0 89 area w/o 13.88 13.88 13.88 13.88 91 HUS w/o 8.9 445.5 0 0 92 HUS w/ 4.5 0.0 0 0 93 AAHUS without 8.9 445.5 0 0 94 AAHUS with 0.1 0 0 0 0 95 change due to project -8.8 0 0 0 0 0 96	86	ΤY	0	1	51								
88 HSiw/ 0.64 0 0.00 0 <t< td=""><td>87</td><td>HSIw/o</td><td>0.64</td><td>0.64</td><td>0.64</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	87	HSIw/o	0.64	0.64	0.64								
1000 13.88 10.98 10.98 10.98	88	, HSI w/	0.64	0	0.00								
100 10.00 10.00 10.00 90 area w/ 13.88 13.88 13.88 91 HUs w/o 8.9 445.5	89	area w/o	13.88	13.88	13.88								
100 Hds w/y 13.00 13.00 13.00 11 Hds w/y 8.9 445.5 1 1 121 Hds w/y 4.5 0.0 1 1 1 132 AAHUs without 8.9 1 1 1 1 134 AAHUs without 8.9 1 1 1 1 1 135 change due to project -8.8 1 <td>90</td> <td>area w/</td> <td>13.88</td> <td>13.88</td> <td>13.88</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td>	90	area w/	13.88	13.88	13.88								
11 Infos W/0 6.3 443.3 Image: Constraint of the second seco	01		15.00	20	13.00								
105 W/ 4.5 0.0 100 <t< td=""><td>91</td><td></td><td></td><td>0.9</td><td>445.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td></t<>	91			0.9	445.5								
33 AAHUS without 8.9	92	HUS W/		4.5	0.0								
94 AAHUs with 0.1 0.1 0.1 0.1 95 change due to project -8.8 0 0 0 96 0 1 5 10 14 15 51 0 98 HSIw/o 0 0 0 0 0 0 0 99 HSI w/ 0.10 0.10 0.18 0.26 0.37 0.37 0 0 100 area w/o 10 1	93	AAHUS WIT	nout		8.9								
95 change due to project 8.8	94	AAHUS wit	h		0.1								
96 Image: state of the s	95	change du	e to project		-8.8							ļ	
97 TY 0 1 5 10 14 15 51 10 98 HSIw/0 0 0 0 0 0 0 0 0 99 HSI w/ 0.10 0.10 0.10 0.18 0.26 0.37 0.37 10 10 100 area w/0 10	96												
98 HSIw/o 0 </td <td>97</td> <td>ΤY</td> <td>0</td> <td>1</td> <td>5</td> <td>10</td> <td>14</td> <td>15</td> <td>51</td> <td></td> <td></td> <td></td> <td></td>	97	ΤY	0	1	5	10	14	15	51				
99 HSI w/ 0.10 0.10 0.18 0.26 0.37 0.37	98	HSIw/o	0	0	0	0	0	0	0				
100 area w/o 10	99	HSI w/	0.10	0.10	0.10	0.18	0.26	0.37	0.37				
101 area w/ 10	100	area w/o	10	10	10	10	10	10	10				
102 HUs w/o 0	101	area w/	10	10	10	10	10	10	10				
103 HUs w/ 1.01 4.05 7.09 8.78 3.15 134.16	102	HUs w/o		0	0	0	0	0	0				
104 AAHUs without 0.00 0.00 105 AAHUs with 3.10 0.00 106 change due to project 3.10 0.00 107 3.10 0.00 0.00 108 Compensation Ratio estimate: CR = loss at impact site/gain at mitigation site X 10/13.88 acres 0.00 109 0.00 0.00 0.00 110 worst case scenario, future with mitigation started 10 years prior to impact: CR = 2.048404 111 Compensation area worst case, mitigation started 10 yrs before impact: 28.43185 0.00 113 compensation area worst case, mitigation started same time as impact: 29.31885 0.00	103	HUs w/		1.01	4.05	7.09	8.78	3.15	134.16				
105 AAHUs with 3.10 3.10 106 change due to project 3.10 3.10 107 3.10 3.10 3.10 108 Compensation Ratio estimate: CR = loss at impact site/gain at mitigation site X 10/13.88 acres 3.10 109 3.10 3.10 3.10 110 worst case scenario, future with mitigation started 10 years prior to impact: CR = 2.048404 111 Compensation area worst case, mitigation started 10 yrs before impact: 28.43185 3.10 113 compensation area worst case, mitigation started same time as impact: 29.31885 3.10	104	, AAHUs wit	hout						0.00				
106 change due to project 3.10 107 107 108 Compensation Ratio estimate: CR = loss at impact site/gain at mitigation site X 10/13.88 acres 108 109 100 worst case scenario, future with mitigation started 10 years prior to impact: CR = 2.048404 111 Compensation area worst case, mitigation started 10 yrs before impact: 28.43185 112 113 compensation area worst case, mitigation started same time as impact: 29.31885 114	105		h						3.00				
100 107 108 108 108 108 109 108 109 108 109 108 109 109 109 109 109 109 109 109 109 100 109 100 1	106	change du	e to project						2 10				
107 Image: Construction of the image: CR = loss at impact site/gain at mitigation site X 10/13.88 acres Image: CR = loss at impact site/gain at mitigation site X 10/13.88 acres 109 Image: CR = loss at impact site/gain at mitigation site X 10/13.88 acres Image: CR = loss at impact site/gain at mitigation site X 10/13.88 acres 110 worst case scenario, future with mitigation started 10 years prior to impact: CR = loss at impact site/gain started same time of impact: CR = loss at impact site/gain started same time of impact: CR = loss at impact site/gain started 10 yrs before impact: CR = loss at impact site/gain started 10 yrs before impact: loss at impact site/gain started 10 yrs before impact: loss at impact site/gain started same time as impact: loss at impact site/gain started same time as impact: loss at impact site/gain started same time as impact: loss at impact site/gain started same time as impact: loss at impact site/gain started same time as impact: loss at impact site/gain started same time as impact: loss at impact site/gain started same time as impact: loss at impact site/gain started same time as impact: loss at impact site/gain started same time as impact: loss at impact site/gain started same time as impact: loss at impact site/gain started same time as impact: loss at impact site/gain started same time as impact: loss at impact site/gain started sit	100	change uu							5.10			ļ	
108 Compensation Ratio estimate: CR = loss at impact site/gain at mitigation site X 10/13.88 acres 109 110 worst case scenario, future with mitigation started 10 years prior to impact: CR = 111 Compare with worst case scenario, future with mitigation started same time of impact: CR = 112 Impact as a company of the prior to impact: CR = 113 compensation area worst case, mitigation started 10 yrs before impact: 114 compensation area worst case, mitigation started same time as impact: 114 29.31885	107	Commence	tion Dalls	ating at a C				antice :''	V 10/12 02				
109 worst case scenario, future with mitigation started 10 years prior to impact: CR = 2.048404 111 Compare with worst case scenario, future with mitigation started same time of impact: CR= 2.112309 112 Image: Compensation area worst case, mitigation started 10 yrs before impact: 28.43185 114 compensation area worst case, mitigation started same time as impact: 29.31885	108	compensa	uon katio e	stimate: Cl	x = 105S at Ir	npact site/	gain at miti	gation site.	x 10/13.88	acres			
110 worst case scenario, future with mitigation started 10 years prior to impact: CR = 2.048404 111 Compare with worst case scenario, future with mitigation started same time of impact: CR= 2.112309 112 Image: Compensation area worst case, mitigation started 10 yrs before impact: 28.43185 114 compensation area worst case, mitigation started same time as impact: 29.31885	109		-			•••							
111 Compare with worst case scenario, future with mitigation started same time of impact: CR= 2.112309 112 Image: Comparison of the c	110		worst case	scenario, f	uture with	mitigation :	started 10 y	ears prior	to impact: (_K =	2.048404		
112112113113compensation area worst case, mitigation started 10 yrs before impact:28.43185114compensation area worst case, mitigation started same time as impact:29.31885	111	Compare v	vith worst c	ase scenar	io, future w	ith mitigati	ion started	same time	of impact:	CR=	2.112309		
113 compensation area worst case, mitigation started 10 yrs before impact:28.43185114 compensation area worst case, mitigation started same time as impact:29.31885	112												
114 compensation area worst case, mitigation started same time as impact: 29.31885	113	compensat	tion area w	orst case, n	nitigation st	arted 10 y	npact:	28.43185					
	114	compensat	tion area wo	orst case, n	nitigation st	arted same	npact:	29.31885					

	А	В	С	D	E	F	G	Н	-	J	К	L
115	Note: sligh	tly lower th	ian mitigati	on concurr	ent, 10 yr h	eadstart m	akes little o	difference				
116												
117	RIPARIAN I	FOREST CO	VER TYPE N	10DEL								
118	Riparian Fo	prest Cover	Type - Wo	rst Case Sce	nario							
119	Inpulation		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
120	V1 - troo h	eight: ontin	$n_{\rm H} = 60 \pm f_{\rm c}$	et: max ave	t of 10 feet	after 20 ve	arc					
120	V1 - tree fr	width: optin		$\frac{1}{100}$ mod if $70\pm$ f	oot wido cit		bost caso					
121	VZ - Stariu						Desicase					
122	v3-tree ca	nopy closur	e; optimur	n 50-80%, s	cenario ma	x is 40%						
123	v4- # speci	les; 3 of 4 p	lanted spe		S	<u>.</u>						
124	V5 - averag	ge understo	ory density;	overshoots	s optimum a	after year 2	20					
125	* - discoun	t overall HS	51 by 1/3 pe	er model ass	sumes mos	t not adjace	ent to wate	r				
126												
127	TY	0	1	5	10	15	20	51				
128	V1	25	25	25	25	30	40	40				
129	V2	70	70	70	70	70	70	70				
130	V3	30	30	30	30	35	40	40				
131	V4	3	3	3	3	3	3	3				
132	V5	25	25	25	25	50	70	70				
133												
134	SI(V1)	0.42	0.42	0.42	0.42	0.50	0.67	0.67				
135	SI(V2)	1	1	1	1	1	1	1				
136	SI(V3)	0.6	0.6	0.6	0.6	0.7	0.8	0.8				
137	SI(V4)	0	1	1	1	1	1	1				
138	SI(V5)	0.87	0.87	0.87	0.87	1.00	0.88	0.88				
139	HSI-rfct*	0.31	0.52	0.52	0.52	0.57	0.59	0.59				<u> </u>
1/0		0.51	0.52	0.52	0.52	0.57	0.55	0.55				
140	τv	0	1	E1								
141		0 72	1	0.72								
142		0.75	0.75	0.75								
143	HSI W/	0.73	0	0								
144	area w/o	13.88	13.88	13.88								
145	area w/	13.88	13.88	13.88								
146	HUs w/o		10.1	507.4								ļ
147	HUs w/		5.1	0.0								ļ
148	AAHUs wit	hout		10.1								
149	AAHUs wit	h		0.1								
150	change du	e to project		-10.0								
151												
152	ТҮ	0	1	5	10	15	20	51				
153	HSIw/o	0	0	0	0	0	0	0				
154	HSI w/	0.31	0.52	0.52	0.52	0.57	0.59	0.59				
155	area w/o	10	10	10	10	10	10	10				
156	area w/	10	10	10	10	10	10	10				
157	HUs w/o		0	0	0	0	0	0				
158	HUs w/		4.17	20.92	26.15	27.35	28.90	181.36				
159	AAHUs wit	hout						0.00				
160	AAHUs wit	h						5.66				
161	change du	e to project	:					5.66				
162						5.00						
163	Compensa	tion Ratio e	stimate [.] C	R = loss at in	gation site	X 10/13 88	acres					
164	Jempendu						0					<u> </u>
165		worst rase	scenario f	uture with	mitigation	started 10	lears prior	to impact: (^R =	1,278270		
166	Compare v	vith worst	ase scenario, I	in future w	/ith mitigations	on started	same time	of impact.	CR=	1.351252		
167	compane v	tion area w	orst case r	nitigation of	tarted 10 v	s hefore in	nact.	17 7/122	CIV-	1.331332		
160	component	tion area w	orst case, r		tarted come		npact.	10 75677				
100	Noto: Are		r boodstor	on mitiant			ipaul.	10.12011				
109	NOLE: Aga	пі, а то уеа	i neaustari	. on mitigat	ion slightly	iowers woi	ST CASE CR					
170												
171	DOWNY W	OODPECKE	K WUDEL								l	

	А	В	С	D	E	F	G	Н		J	К	L
172			Downy Wo	odpecker r	nodel - Wo	rst Case Sc	enario					
173			V1 = less, s	lower, basa	al area, site	heterogen	eity, limits	max SI to 0	.7			
174			V2 = snags	slightly les	s abundant	at year 10,	1.0 snags/	ас				
175												
176	Note: for t	he 10 vear	headstart.	hifted TY1	0 to TY0. an	d TY20 to ⁻	TY10 and hi	gher				
177	TY	0	1	5	9	10	20	51				
178	V1	0	20	20	24	25	25	31				
179	V2	0	0		0	1	1	1				
180	V2	0	0	0	0	-						
181	SI(\/1)	0.00	0.45	0.45	0 55	0.57	0.57	0.70				
101		0.00	0.45	0.43	0.55	0.37	0.37	0.70				
102		0.00	0.00	0.00	0.00	0.20	0.20	0.20				
103	nsi-uw	0.00	0.00	0.00	0.00	0.20	0.20	0.20				-
184	T \/	0	1	F 4								
185		0	1	51								
186	HSIW/O	0.23	0.23	0.23								
187	HSI W/	0.23	0	0.00								
188	area w/o	13.88	13.88	13.88								
189	area w/	13.88	13.88	13.88								
190	HUs w/o		3.2	160.5								
191	HUs w/		1.6	0.0								
192	AAHUs wit	hout		3.2								
193	AAHUs wit	h		0.0								
194	change du	e to project	t	-3.2								
195												
196	ΤY	0	1	5	10	14	15	51				
197	HSIw/o	0	0	0	0	0	0	0				
198	HSI w/	0.00	0.00	0.00	0.00	0.20	0.20	0.20				
199	area w/o	10	10	10	10	10	10	10				
200	area w/	10	10	10	10	10	10	10				
201	HUs w/o		0	0	0	0	0	0				
202	HUs w/		0.00	0.00	0.00	4.00	2.00	72.00				
203	AAHUs wit	hout						0.00				
204	AAHUs wit	h						1.53				
205	change du	e to project	t					1.53				
206												
207	Compensa	tion Ratio e	estimate: Cl	R = loss at in	npact site/	gain at miti	gation site	X 10/13.88	acres			
208						-	-					
209		worst case	scenario, f	uture with	mitigation s	started 10	ears prior	to impact: (CR =	1.49772		
210	Compare v	vith worst o	case scenar	o, future w	vith mitigati	on started	same time	of impact: (CR=	1.600304		
211	Note: lowe	r overall sr	nag densitie	, s possible v	where ease	ments rest	rict woodv	, plantings/h	eight			
212	Note: again	n, slightly lo	ower CR wit	h 10 vear h	eadstart or	n mitigatior	n site		~			
213	compensat	tion area w	orst case. n	nitigation st	arted 10 vr	s before in	npact:	20,78836				
214	compensat	ion area w	orst case. n	nitigation st	arted same	e time as in	ipact:	22.21222				
215							1					
216			MODEI									
217	Hairy Moo	dnecker - 4	Vorst case o	cenario (ch	ruh empha	sis encros	hments c	over/dhh m	ore limited			
210		S10". ontin	$\frac{1}{2}$	re hogin +	o form at w	$\frac{1}{2}$ and $\frac{1}{2}$				·/		
210 210	V2 - moon	dhh nostir		a at Qr inch		ont at 10	" due to co	croschmon	t limits (vo	ar 10)		
213		dbb cover	min value	= αι ο+ ΙΠΟΠ CI ⊑ +han ³	nerozene	ith dhh c +			it mints (ye	ai 10j		
220			hoging to be		150/ +han :-		th coverte	40% (voor	0 to 15			
221	v4 - % can	Spy cover,	Degins to ha	ave value >	1370, then Ir	ici eases WI	th cover to	40% (years	501015)			
222	TV	^			10	4 -	10	20	25	F1		
223	1 T	0		5	10	15	19	20	25	51		
224	V1 V2	0	0	0	1	10			10			
225	VZ	0		8	10	10	10	10	10	10		
226	V3	6	6	8	10	10	10	10	10	10		
227	V4	30	30	35	40	40	40	40	40	40		
228												

	Α	В	С	D	E	F	G	Н	I	J	K	L	
229	SI(V1)	0	0	0	0.2	0.2	0.2	0.2	0.2	0.2			
230	SI(V2)	0.00	0.00	0.00	0.29	0.29	0.29	0.29	0.29	0.29			
231	SI(V3)	0.51	0.51	0.77	1.00	1.00	1.00	1.00	1.00	1.00			
232	SI(V4)	0.21	0.21	0.29	0.36	0.36	0.36	0.36	0.36	0.36			
233	HSI(hw)	0.00	0.00	0.00	0.15	0.15	0.15	0.15	0.15	0.15			
234													
235	ΤY	0	1	51									
236	HSIw/o	0.06	0.06	0.06									
237	HSI w/	0.06	0	0									
238	area w/o	13.88	13.88	13.88									
239	area w/	13.88	13.88	13.88									
240	HUs w/o		0.9	43.6									
241	HUs w/		0.4	0.0									
242	AAHUs wit	hout		0.9									
243	AAHUs wit	h		0.0									
244	change du	e to project		-0.9									
245													
246	TY	0	1	5	10	15	19	20	25	51			
247	HSIw/o	0	0	0	0	0	0	0	0	0			
248	HSI w/	0.00	0.00	0.00	0.15	0.15	0.15	0.15	0.15	0.15			
249	area w/o	10	10	10	10	10	10	10	10	10			
250	area w/	10	10	10	10	10	10	10	10	10			
251	HUs w/o		0	0	0	0	0	0	0	0			
252	HUs w/		0.00	0.00	3.71	7.42	5.94	1.48	7.42	38.58			
253	AAHUS wit	hout								0.00			
254	54 AAHUs with 1.27 55 change due to project 1.27												
255	255 change due to project 1.27												
256	Commonsor	tion Datia a	atimata. Cl					V 10/12 00					
257	Compensa	tion Ratio e	stimate: Ci	R = loss at ir	npact site/	gain at miti	gation site	X 10/13.88	acres				
250		worst casa	cconorio f	uturo with	mitigation	started 10	voors prior	to impact: (^D _	0.40115			
259	Comparav	worst case		io futuro w	ith mitigation :	ion started	ears prior	of impact:	_K =	0.49115			
260	Note: lowe		ase scenar	s possible v	whore eace	monts rost	same time	of impact.	oight	0.002075			
262	Also loss th	an 1.1 with	lower fut	ires althou		5 after vr 1	a) much he	ttor than h	acalina (N (16)			
262	compensat	tion 2102 With	orst case r	nitigation st	arted 10 vi	s before in	nact.	6 817155		,0,			
264	compensat	tion area w	orst case, r	nitigation st	tarted same	a time as in	ipaci.	12 25/13					
265	NOTE: Ab		o valuo shc	we significa	ant reductio	on compare	ipact.	12.2343					
265	NOTE: AD			ws significa				at 10 years					
267	Summary	Cable of Fut	ures-hased	l comnensa	tion area a	nd ratio for	worst case	scenario <i>î</i>	l0 vear adv	ance mitiga	tion		
268	Jannary			hab value		comp		mitigation	ratios				
269				10 vr adv		area		this TAB	from prior	ТАВ			
270	scenario			worst		worst		worst	mitigation	starts same	2		
271		project		mitigation		10 yr adv		10y adv	year as im	pact			
272		loss		gain. 10ac		,			,				
273	MODEL	AAHUs		AAHUs				COMPARE	THESE				
274	mWarblr	-8.8		6.7		13.1		0.94	1.08				
275	RSG	-8.8		3.1		28.4		2.05	2.11				
276	RFCT	-10.0		5.7		17.7		1.28	1.35				
277	277 DW -3.2 1.5 20.8 1.50 1.60												
278	278 HW -0.9 1.3 6.8 0.49 0.88												
279													
280	Note: in th	e columns /	A-H, above	left, the bo	ldfaced val	ues show t	he effect of	the 10 yea	r headstart				
281	If mitigatio	n area were	e "left over	" from a lar	ger than ne	eeded site f	or TS_30_L	, the comp	ensation				
282	282 for a next reach exactly the same as TS_30_L, would be slightly less, due to greater AAHUs												
283	gained per	10 acres of	f mitigatior	site, which	would be	10 years ah	ead and of	higher valu	е				
284	84 It isn't a huge difference, however, and the highest ratio of all models still rounds to 2:1												

APPENDIX B: Models

Biological Services Program and Division of Ecological Services **REFERENCE COPY** Do Not Remove from the Library U. S. Fish and Wildlife Service National Wetlands Research Center 700 Cajun Dome Boulevard Lafayette, Louisiana 70506

FWS/OBS-82/10.27 JULY 1982

HABITAT SUITABILITY INDEX MODELS: YELLOW WARBLER

Fish and Wildlife Service U.S. Department of the Interior

The Biological Services Program was established within the U.S. Fish and Wildlife Service to supply scientific information and methodologies on key environmental issues that impact fish and wildlife resources and their supporting ecosystems. The mission of the program is as follows:

- To strengthen the Fish and Wildlife Service in its role as a primary source of information on national fish and wildlife resources, particularly in respect to environmental impact assessment.
- To gather, analyze, and present information that will aid decisionmakers in the identification and resolution of problems associated with major changes in land and water use.
- To provide better ecological information and evaluation for Department of the Interior development programs, such as those relating to energy development.

Information developed by the Biological Services Program is intended for use in the planning and decisionmaking process to prevent or minimize the impact of development on fish and wildlife. Research activities and technical assistance services are based on an analysis of the issues, a determination of the decisionmakers involved and their information needs, and an evaluation of the state of the art to identify information gaps and to determine priorities. This is a strategy that will ensure that the products produced and disseminated are timely and useful.

Projects have been initiated in the following areas: coal extraction and conversion; power plants; geothermal, mineral and oil shale development; water resource analysis, including stream alterations and western water allocation; coastal ecosystems and Outer Continental Shelf development; and systems inventory, including National Wetland Inventory, habitat classification and analysis, and information transfer.

The Biological Services Program consists of the Office of Biological Services in Washington, D.C., which is responsible for overall planning and management; National Teams, which provide the Program's central scientific and technical expertise and arrange for contracting biological services studies with states, universities, consulting firms, and others; Regional Staffs, who provide a link to problems at the operating level; and staffs at certain Fish and Wildlife Service research facilities, who conduct in-house research studies.

This model is designed to be used by the Division of Ecological Services in conjunction with the Habitat Evaluation Procedures.

HABITAT SUITABILITY INDEX MODELS: YELLOW WARBLER

by

Richard L. Schroeder Habitat Evaluation Procedures Group Western Energy and Land Use Team U.S. Fish and Wildlife Service Drake Creekside Building One 2625 Redwing Road Fort Collins, CO 80526

Western Energy and Land Use Team Office of Biological Services Fish and Wildlife Service U.S. Department of the Interior Washington, DC 20240

This report should be cited as:

Schroeder, R. L. 1982. Habitat suitability index models: yellow warbler. U.S. Dept. Int., Fish Wildl. Serv. FWS/OBS-82/10.27. 7 pp.

PREFACE

This document is part of the Habitat Suitability Index (HSI) Model Series (FWS/OBS-82/10), which provides habitat information useful for impact assessment and habitat management. Several types of habitat information are provided. The Habitat Use Information Section is largely constrained to those data that can be used to derive quantitative relationships between key environmental variables and habitat suitability. The habitat use information provides the foundation for HSI models that follow. In addition, this same information may be useful in the development of other models more appropriate to specific assessment or evaluation needs.

The HSI Model Section documents a habitat model and information pertinent to its application. The model synthesizes the habitat use information into a framework appropriate for field application and is scaled to produce an index value between 0.0 (unsuitable habitat) and 1.0 (optimum habitat). The application information includes descriptions of the geographic ranges and seasonal application of the model, its current verification status, and a listing of model variables with recommended measurement techniques for each variable.

In essence, the model presented herein is a hypothesis of species-habitat relationships and not a statement of proven cause and effect relationships. Results of model performance tests, when available, are referenced. However, models that have demonstrated reliability in specific situations may prove unreliable in others. For this reason, feedback is encouraged from users of this model concerning improvements and other suggestions that may increase the utility and effectiveness of this habitat-based approach to fish and wildlife planning. Please send suggestions to:

Habitat Evaluation Procedures Group Western Energy and Land Use Team U.S. Fish and Wildlife Service 2625 Redwing Road Ft. Collins, CO 80526

CONTENTS

	Page
PREFACEACKNOWLEDGMENTS	iii V
HABITAT USE INFORMATION General Food Water Cover Reproduction Interspersion Special Considerations HABITAT SUITABILITY INDEX (HSI) MODEL Model Applicability Model Description Model Relationships Application of the Model	1 1 1 1 2 2 2 2 3 4 6
SOURCES OF OTHER MODELS	/
REFERENCES	7

ACKNOWLEDGMENTS

We gratefully acknowledge Douglass H. Morse for his review of this habitat model. The cover of this document was illustrated by Jennifer Shoemaker. Word processing was provided by Carolyn Gulzow and Dora Ibarra.

.

YELLOW WARBLER (Dendroica petechia)

HABITAT USE INFORMATION

General

The yellow warbler (<u>Dendroica petechia</u>) is a breeding bird throughout the entire United States, with the exception of parts of the Southeast (Robbins et al. 1966). Preferred habitats are wet areas with abundant shrubs or small trees (Bent 1953). Yellow warblers inhabit hedgerows, thickets, marshes, swamp edges (Starling 1978), aspen (<u>Populus spp.</u>) groves, and willow (<u>Salix spp.</u>) swamps (Salt 1957), as well as residential areas (Morse 1966).

Food

More than 90% of the food of yellow warblers is insects (Bent 1953), taken in proportion to their availability (Busby and Sealy 1979). Foraging in Maine occurred primarily on small limbs in deciduous foliage (Morse 1973).

Water

Dietary water requirements were not mentioned in the literature. Yellow warblers prefer wet habitats (Bent 1953; Morse 1966; Stauffer and Best 1980).

Cover

Cover needs of the yellow warbler are assumed to be the same as reproduction habitat needs and are discussed in the following section.

Reproduction

Preferred foraging and nesting habitats in the Northeast are wet areas, partially covered by willows and alders (Alnus spp.), ranging in height from 1.5 to 4 m (5 to 13.3 ft) (Morse 1966). It is unusual to find yellow warblers in extensive forests (Hebard 1961) with closed canopies (Morse 1966). Yellow warblers in small islands of mixed coniferous-deciduous growth in Maine utilized deciduous foliage far more frequently than would be expected by chance alone (Morse 1973). Coniferous areas were mostly avoided and areas of low deciduous growth preferred.

Nests are generally placed 0.9 to 2.4 m (3 to 8 ft) above the ground, and nest heights rarely exceed 9.1 to 12.2 m (30 to 40 ft) (Bent 1953). Plants

used for nesting include willows, alders, and other hydrophytic shrubs and trees (Bent 1953), including box-elders (Acer <u>negundo</u>) and cottonwoods (<u>Populus</u> spp.) (Schrantz 1943). In Iowa, dense thickets were frequently occupied by yellow warblers while open thickets with widely spaced shrubs rarely contained nests (Kendeigh 1941).

Males frequently sing from exposed song perches (Kendeigh 1941; Ficken and Ficken 1965), although yellow warblers will nest in areas without elevated perches (Morse 1966).

A number of Breeding Bird Census reports (Van Velzen 1981) were summarized to determine nesting habitat needs of the yellow warbler, and a clear pattern of habitat preferences emerged. Yellow warblers nested in less than 5% of census areas comprised of extensive upland forested cover types (deciduous or coniferous) across the entire country. Approximately two-thirds of all census areas with deciduous shrub-dominated cover types were utilized, while shrub wetland types received 100% use. Wetlands dominated by shrubs had the highest average breeding densities of all cover types [2.04 males per ha (2.5 acre)]. Approximately two-thirds of the census areas comprised of forested draws and riparian forests of the western United States were used, but average densities were low [0.5 males per ha (2.5 acre)].

Interspersion

Yellow warblers in Iowa have been reported to prefer edge habitats (Kendeigh 1941; Stauffer and Best 1980). Territory size has been reported as 0.16 ha (0.4 acre) (Kendeigh 1941) and 0.15 ha (0.37 acre) (Kammeraad 1964).

Special Considerations

The yellow warbler has been on the Audubon Society's Blue List of declining birds for 9 of the last 10 years (Tate 1981).

HABITAT SUITABILITY INDEX (HSI) MODEL

Model Applicability

<u>Geographic area</u>. This model has been developed for application within the breeding range of the yellow warbler.

<u>Season</u>. This model was developed to evaluate the breeding season habitat needs of the yellow warbler.

<u>Cover types</u>. This model was developed to evaluate habitat in the dominant cover types used by the yellow warbler: Deciduous Shrubland (DS) and Deciduous Scrub/Shrub Wetland (DSW) (terminology follows that of U.S. Fish and Wildlife Service 1981). Yellow warblers only occasionally utilize forested habitats and reported population densities in forests are low. The habitat requirements in forested habitats are not well documented in the literature. For these reasons, this model does not consider forested cover types. Minimum habitat area. Minimum habitat area is defined as the minimum amount of contiguous habitat that is required before an area will be occupied by a species. Information on the minimum habitat area for the yellow warbler was not located in the literature. Based on reported territory sizes, it is assumed that at least 0.15 ha (0.37 acre) of suitable habitat must be available for the yellow warbler to occupy an area. If less than this amount is present, the HSI is assumed to be 0.0.

Verification level. Previous drafts of the yellow warbler habitat model were reviewed by Douglass H. Morse and specific comments were incorporated into the current model (Morse, pers. comm.).

Model Description

Overview. This model considers the quality of the reproduction (nesting) habitat needs of the yellow warbler to determine overall habitat suitability. Food, cover, and water requirements are assumed to be met by nesting needs.

The relationship between habitat variables, life requisites, cover types, and the HSI for the yellow warbler is illustrated in Figure 1.

Figure 1. Relationship between habitat variables, life requisites, cover types, and the HSI for the yellow warbler.

The following sections provide a written documentation of the logic and assumptions used to interpret the habitat information for the yellow warbler and to explain and justify the variables and equations that are used in the HSI model. Specifically, these sections cover the following: (1) identification of variables that will be used in the model; (2) definition and justification of the suitability levels of each variable; and (3) description of the assumed relationship between variables.

<u>Reproduction component</u>. Optimal nesting habitat for the yellow warbler is provided in wet areas with dense, moderately tall stands of hydrophytic deciduous shrubs. Upland shrub habitats on dry sites will provide only marginal suitability. It is assumed that optimal habitats contain 100% hydrophytic deciduous shrubs and that habitats with no hydrophytic shrubs will provide marginal suitability. Shrub densities between 60 and 80% crown cover are assumed to be optimal. As shrub densities approach zero cover, suitability also approaches zero. Totally closed shrub canopies are assumed to be of only moderate suitability, due to the probable restrictions on movement of the warblers in those conditions. Shrub heights of 2 m (6.6 ft) or greater are assumed to be optimal, and suitability will decrease as heights decrease to zero.

Each of these habitat variables exert a major influence in determining overall habitat quality for the yellow warbler. A habitat must contain optimal levels of all variables to have maximum suitability. Low values of any one variable may be partially offset by higher values of the remaining variables. Habitats with low values for two or more variables will provide low overall suitability levels.

Model Relationships

<u>Suitability Index (SI) graphs for habitat variables</u>. This section contains suitability index graphs that illustrate the habitat relationships described in the previous section.

Cover type Variable

DS,DSW V₁ Percent deciduous shrub crown cover.

Equations. In order to obtain life requisite values for the yellow warbler, the SI values for appropriate variables must be combined with the use of equations. A discussion and explanation of the assumed relationship between variables was included under <u>Model Description</u>, and the specific equation in this model was chosen to mimic these perceived biological relationships as closely as possible. The suggested equation for obtaining a reproduction value is presented below.

Life requisite

Cover type

Equation

Reproduction

DS,DSW

$$(V_1 \times V_2 \times V_3)^{1/2}$$

 $\underline{\rm HSI}\ {\rm determination}.$ The HSI value for the yellow warbler is equal to the reproduction value.

Application of the Model

Definitions of variables and suggested field measurement techniques (Hays et al. 1981) are provided in Figure 2.

Variable (definition)		Cover types	Suggested technique
V,	Percent deciduous shrub crown cover (the percent of the ground that is shaded by a vertical projection of the canopies of woody deciduous vegetation which are less than 5 m (16.5 ft) in height).	DS,DSW	Line intercept
V ₂	Average height of deciduous shrub canopy (the average height from the ground surface to the top of those shrubs which comprise the uppermost shrub canopy).	DW,DSW	Graduated rod
V ₃	Percent of deciduous shrub canopy comprised of hydrophytic shrubs (the relative percent of the amount of hydrophytic shrubs compared to all shrubs, based on canopy cover).	DS,DSW	Line intercept

Figure 2. Definitions of variables and suggested measurement techniques.

SOURCES OF OTHER MODELS

No other habitat models for the yellow warbler were located.

REFERENCES

- Bent, A. C. 1953. Life histories of North American wood warblers. U.S. Natl. Mus. Bull. 203. 734 pp.
- Busby, D. G., and S. G. Sealy. 1979. Feeding ecology of nesting yellow warblers. Can. J. Zool. 57(8):1670-1681.
- Ficken, M. S., and R. W. Ficken. 1965. Territorial display as a populationregulating mechanism in a yellow warbler. Auk 82:274-275.
- Hays, R. L., C. S. Summers, and W. Seitz. 1981. Estimating wildlife habitat variables. U.S. Dept. Int., Fish Wildl. Serv. FWS/OBS-81/47. 173 pp.
- Hebard, F. V. 1961. Yellow warblers in conifers. Wilson Bull. 73(4):394-395.
- Kammeraad, J. W. 1964. Nesting habits and survival of yellow warblers. Jack-pine Warbler 42(2):243-248.
- Kendeigh, S. C. 1941. Birds of a prairie community. Condor 43(4):165-174.
- Morse, D. H. 1966. The context of songs in the yellow warbler. Wilson Bull. 78(4):444-455.

______. 1973. The foraging of small populations of yellow warblers and American redstarts. Ecology 54(2):346-355.

- Morse, D. H. Personal communication (letter dated 4 March 1982). Brown University, Providence, RI.
- Robbins, C. S., B. Braun, and H. S. Zim. 1966. Birds of North America. Golden Press, N.Y. 340 pp.
- Salt, G. W. 1957. An analysis of avifaunas in the Teton Mountains and Jackson Hole, Wyoming. Condor 59:373-393.
- Schrantz, F. G. 1943. Nest life of the eastern yellow warbler. Auk 60:367-387.
- Starling, A. 1978. Enjoying Indiana birds. Indiana Univ. Press, Bloomington. 214 pp.
- Stauffer, D. F., and L. B. Best. 1980. Habitat selection of birds of riparian communities: Evaluating effects of habitat alternations. J. Wildl. Manage. 44(1):1-15.

Tate, J., Jr. 1981. The Blue List for 1981. Am. Birds 35(1):3-10.

- U.S. Fish and Wildlife Service. 1981. Standards for the development of habitat suitability index models. 103 ESM. U.S. Dept. Int. Fish Wildl. Serv., Div. Ecol. Serv. n.p.
- Van Velzen, W. T. 1981. Forty-fourth breeding bird census. Am. Birds 35(1):46-112.

Nethod Close Section Close Section 4. The and Substrie 4. The and Substrie 4. Neuron Substrie Habitat Suitability Index Models: Yellow Warbler 4. Neuron Substrie 4. Neuron Substrie ** Antends Habitat Suitability Index Models: Yellow Warbler 4. Neuron Substrie 4. Neuron Substrie ** Antends Habitat Evaluation Proceedures Group 10. Protection Substriem Neuron and Address 4. Neuron Substriem Neuron and Address 4. Neuron Substriem Neuron and Address ** Professing Organization Neuron and Address Habitat Evaluation Proceedures Group 10. Protection Substriem Neuron and Address 11. Contraction Neuron Substriem Neuron and Address ** Sector Substring Organization Neuron and Address Habitat Evaluation Of the Interior 13. Substriements of the Sector Substriement Neuron Neuron Substriement Neuron Substriement Neuron Substriement Neuron Substriement Neuron Substriement Neuron Substris Neuron Neuron Subs	50272 -101	AT NO	: •	3 Perinter's Accession No.
the and Subsets Habitat Suitability Index Models: Yellow Warbler Habitat Suitability Index Models: Yellow Warbler Advent due Subsets Advent due Subsets Advent due A	PAGE EWS /	100 00/10 27	4	3. Respirant's Accession No.
Habitat Suitability Index Models: Yellow Warbler July 1982 A. Authoriz Richard L. Schroeder Performing Organization Name and Address Habitat Evaluation Procedures Group Device Teaming Organization Name and Address Western Energy and Land Use Team U.S. Fish and Wildlife Service Drake Creekside Building One 2625 Redwing Road Sommerni Organization Name and Address Western Energy and Land Use Team U.S. Department of the Interior Sommerni Organization Name and Address Western Energy and Land Use Team Office of Biological Services Fish and Wildlife Service U.S. Department of the Interior Washington, D.C. 20240 The address Limbo of the Interior Washington, D.C. 20240 Subdementary Notes Assess Limbo of the species - habitat requirements votes Assessment and habitat management activities. Assessment and habitat management activities. Subsciented Amount of the species forms the development of an HSI model, designed for use in impact assessment Habitat Use The development of an HSI model. Security Class The Baltat String Address the Habitat management activities. 	4. Title and Subtitle	003-02/10.2/		5. Report Date
Authorits Richard L. Schroeder Added Ad	Habitat Suitability Index	Models: Yellow Wa	rbler	July 1982
7. Authorist Richard L. Schroeder Performing Organization Nerve and Address Western Energy and Land Use Team U.S. Fish and Wildlife Service Drake Creekside Building One 26262 Redwing Road Fort Collins, CD. 80626 10. Dispatched Consection Nerve and Address Western Energy and Land Use Team Office of Biological Services Fish and Wildlife Service U.S. Department of the Interior 13. Type of Resont & Period Convect Washington, D.C. 20240 14. Austract Umit 200 weres 14. Austract Umit 200 weres 14. Austract Umit 200 weres Austract Umit 200 weres Habitat such Address Fish and Wildlife Service U. Supportment of the Interior Washington, D.C. 20240 14. Austract Umit 200 weres Austract Mitting Services Fish and Wildlife Information is presented in a review of the Publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available information is presented in a review of the Interature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities. 17. Decument Amerysta a. Descretors Animal behavior Birds Wildlife Habitat use Species-habitat relations c. Cobart Teactors Chabitat trelations c. Cobart Teactors Amateuity Streement RELEASE UNLIMITED	, j			6.
Richard L. Schroeder In Protection Name and Address Habitat Evaluation Procedures Group Western Energy and Land Use Team U.S. Fish and Wildlife Service In Generation Name Drake Creekside Building One ca 2625 Redwing Road ca Fort Collins, CO. 00526 ca It Seensone Organization Name and Address Western Energy and Land Use Team Vis. Department of the Interior ca It Supporter Collins, CO. 00526 in Organization Name and Address Vis. Department of the Interior in Organization Name and Address Vis. Department of the Interior in Organization Name and Address Vista and Wildlife Service U.S. Department of the Interior Vista and Wildlife Service U.S. Department of the Interior Vista and Vista and Vista Supporter Address Habitat Suitability Index (HSI) models and was developed through an analysis of available information on the species-habitat requirement of the species. Habitat use information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities. If. Decument Analysis a. Descreter Impact assessment Animal behavior Mathematical models Birds Vista Address Vista Dinter Organization	7. Author(s)		<u> </u>	8 Performing Organization Post No.
2. Average organization Name and Address Western Energy and Land Use Team U.S. Fish and Wildlife Service Drake Creekside Building One 2625 Redwing Read Fort Collins, CO 80526 11. Convention Annual Convention Annual Convention Conve	Richard L. Schroeder			a Ferforming Organization Rept. No.
Western Energy and Land Use Team U.S. Fish and Wildlife Service Drake Creekside Building One 2625 Redwing Road 11. Contraction or Grant(G) Ne. Inc. 12. Spendence Organization Name and Address Vestern Energy and Land Use Team Office of Biological Services 13. Tree of Resort & Pende Covered Vestern Energy and Land Use Team Office of Biological Services 12. Spendence Organization Name and Address Vestern Energy and Land Use Team Office of Biological Services 13. Tree of Resort & Pende Covered Vestern Energy and Land Use Team Office of Biological Services 13. Supplementary Notes 14. Advances 14. Advances (Umit 200 words) 14. Supplementary Notes 15. Supplementary Notes 14. Advances 14. Advances (Umit 200 words) 14. Supplementary Notes 15. Supplementary Notes 14. Advances (Umit 200 words) 14. Advances (Umit 200 words) 14. Supplementary Notes 15. Supplementary Notes 14. Advances (Umit 200 words) 16. Advances (Umit 200 words) 14. Advances (Umit 200 words) 17. Decument Analysis of available information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities. 17. Decument Analysis & Descriptor Animal behavior Impact assessment Habitat Suitability Index Habitat Suitability Index Habitat Suitability Index Habitat Suitability Index Habitat Suitability Index Habitat Suitatrelations E Advance Subterement RELEASE UNL	9. Performing Organization Name and Addres	Habitat Evalua	tion Procedures Grou	D 10. Project/Task/Work Unit No.
U.S. Fish and Wildlife Service Drake Creekside Building One 2625 Redwing Road Fort Collins, CO. 80526 II. Contrentito of Grantito Ne. Co. 12. Sconseng Organization Name and Address Western Energy and Land Use Team Office of Biological Services Fish and Wildlife Service U.S. Department of the Interior Washington, D.C. 20240 II. Tree of Report & Penno Covered U.S. Department of the Interior 14. Supplementary Notes II. Supplementary Notes II. Supplementary Notes 14. Asserted (Limit 200 words) Habitat preferences of the yellow warbler (Dendroica petechia) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available information on the species-habitat require- ments of the species. Habitat use information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities. 17. Decement Analysis a. Descriptor Animal behavior Birds Wildlife Habitat Suitability Index Habitat use Species-habitat relations constructions Sterment RELEASE UNLIMITED Impact assessment Habitat use Species-habitat relations constructions and event 18. Asserted Asserter WildLASS IFIED II. No. of Pages U.C.LASSIFIED II. No. of Pages U.C.LASSIFIED 18. Availabit Sterment RELEASE UNLIMITED II. Secure Constructions of Sterment Stermetary Sterment Recentary Sterment R		Western Energy	and Land Use Team	F
Drake Creekside Building One .cc 262 Redwing Road .co 12 Scenseng Organization Name and Address Western Emergy and Land Use Team 13. Type of Report & Period Covered 12. Scenseng Organization Name and Address Western Emergy and Land Use Team 14. 13. Supplementation Name and Address Western Emergy and Land Use Team 14. 14. Supplementation Name and Address Western Emergy and Land Use Team 14. 15. Supplementation Name and Address Nashington, D.C. 20230 14. 16. Abstract (Limit 200 words) Nashington, D.C. 20230 14. 18. Abstract (Limit 200 words) Nashington, D.C. 20230 14. 18. Abstract (Limit 200 words) Nashington, D.C. 20230 14. 18. Abstract (Limit 200 words) Nashington, D.C. 20230 14. 18. Abstract (Limit 200 words) Nashington, D.C. 20230 14. 18. Abstract (Limit 200 words) Nashington, D.C. 20230 14. 18. Abstract (Limit 200 words) Nashington, D.C. 20230 14. 18. Abstract (Limit 200 words) Nashington, D.C. 20230 15. 19. Second A theorem Second A second		U.S. Fish and	Wildlife Service	11. Contract(C) or Grant(G) No.
2625 Redwing Road Fort Collins, CO 20056 (3) 12. Sommeria Organization Name and Address Western Energy and Land Use Team Office of Biological Services Fish and Wildlife Service U.S. Department of the Interior 13. Type of Resort & Pence Covered Washington, D.C. 20240 14.		Drake Creeksid	e Building One	(C)
12. Soorsening Organization Name and Address Western Energy and Land Use Team Office of Biological Services Fish and Wildlife Service 11. Type of Record & Pennod Covered 13. Supplementation Name and Address Western Energy and Land Use Team Office of Biological Services Fish and Wildlife Service 14. 13. Supplementary Notes 14. 13. Supplementary Notes 14. 14. Abstract (Umit 200 words) 14. 15. Austionmentary Notes 14. 14. Abstract (Umit 200 words) 14. 15. Austract (Umit 200 words) 14. 16. Abstract (Umit 200 words) 14. 17. Decument Analysis a. Deconstore 14. 18. Abstract (Umit 200 words) 15. Standard (KSI) models and was developed through an analysis of available information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities. 17. Decument Analysis a. Deconstore Animal behavior Animal behavior Mathematical models Birds 5. Impact assessment Habitat Suitability Index Habitat management Habitat Suitability Index Habitat management Habitat Use Species-habitat relations Costereforder forme free 19. Secont C		2625 Redwing R	oad	G
17. Decument Analysis & Descriptors Animal behavior Mathematical models Birds Production of the species Abstract (Ummt 200 words) 14. Abstract (Ummt 200 words) 15. Supplementary Netse 14. Abstract (Ummt 200 words) 14. Abstract (Ummt 200 words) 14. Abstract (Ummt 200 words) 15. Abstract (Ummt 200 words) 14. Abstract (Ummt 200 words) 14. Abstract (Ummt 200 words) 14. Abstract (Ummt 200 words) 14. Abstract (Ummt 200 words) 15. Supplementary Netse 14. Abstract (Ummt 200 words) 16. Abstract (Ummt 200 words) 18. Supplementary, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities. 17. Decument Analysis a. Descriptors Animal behavior Mathematical models Birds Signet/wordse-Solar ams Yellow wordser Impact assessment Habitat Suitability Index Habitat management Habitat use Species-habitat relations - c. costar Frave/Genes/Genes 11 - v +7pp 18. Avaitexity Statement 12. Secury Class (The Sec	12 Soonsoring Organization Name and Addre	Fort Lollins,	<u>CU 80526</u>	12 Turns of Persont & Period Coursed
17. Decument Analysis & Oscentrate 18. Supplementary Notes 18. Supplementary Notes 18. Supplementary Notes 18. Adverse (Jumit 200 words) Habitat preferences of the yellow warbler (Dendroica petechia) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities. 17. Decument Analysis & Oscentrate Animal behavior Mathematical models Birds Nimal behavior Mathematical models Sirds Wildlife Habitat Suitability Index Habitat Suitability Index Habitat management Pendroica petechia Impact assessment Habitat Suitability Index Habitat management Species-habitat relations c.cosArt Providence c.cosArt Providence ii v +7pp. Ste Ansult Statement ii v +7pp. Ste Ansult Statement Ste Ansult Statement RELEASE UNLIMITED Ste Ansult Statement Ste Ansult Statement Ste Ansult Staterent Ste	12. Sponsoring organization Name and Addre	Western Energy Office of Biol	and Land Use leam	13. Type of Report & Period Covered
11.5. Department of the Interior 14 15. Supplementary Notes 14 16. Supplementary Notes 14 18. Abstract (Umit: 200 words) 14 Habitat preferences of the yellow warbler (Dendroica petechia) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available information on the species-habitat requirements of the species. Habitat use information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities. 17. Geogrammet Analysis a. Descriptors Animal behavior Mathematical models Birds Willdlife Habitat Suitability Index Beginnering Impact assessment Habitat Suitability Index Habitat Suitability Index <td< td=""><td></td><td>UTTICE OT BIOI Fish and Wildl</td><td>ife Services</td><td></td></td<>		UTTICE OT BIOI Fish and Wildl	ife Services	
13. Supplementary Notes 14. Abstreet (Limit: 200 words) Habitat preferences of the yellow warbler (<u>Dendroica petechia</u>) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available information on the species-habitat requirements of the species. Habitat use information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities. 17. Decument Analysis a. Osecretore Animal behavior Mathematical models Birds Wildlife Habits a. Species-habitat require Habitat Suitability Index Habitat management tassessment Habitat use Species-habitat relations c. cosart Mead/Group Impact assessment Habitat use Species-habitat relations s. cosart Mead/Group Is. Security Class (The Species) 14. Availability Statement Is. Security Class (The Species) RELEASE UNLIMITED Is. No. of Pages UNCLASSIFIED Is. No. of Pages UNCLASSIFIED <td></td> <td>IIS Departmen</td> <td>t of the Interior</td> <td>14.</td>		IIS Departmen	t of the Interior	14.
15. Suspirementary Notes 16. Abstract (Limit 200 words) Habitat preferences of the yellow warbler (Dendroica petechia) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available information on the species-habitat requirements of the species. Habitat use information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities. 17. Document Analysis + Descriptor Animal behavior Mathematical models Birds Wildlife Habitat Suitability Index Habitat management Habitat use Species-habitat relations - cosart Previous Impact assessment Habitat use Species-habitat relations - cosart Previous Is Security Class (The Secont) 18. Availability Starment UNCLASSIFIED RELEASE UNLIMITED Is Security Class (The Secont) 18. Availability Starment 22. Price RELEASE UNLIMITED Security Class (The Secont) 21. No. of Pages 22. Price		Washington, D.	C. 20240	
14. Abstract (Umit 200 words) Habitat preferences of the yellow warbler (Dendroica petechia) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available information on the species-habitat requirements of the species. Habitat use information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities. 17. Decument Analysis a. Descriptors Animal behavior Mathematical models Birds *. descriptors Animal behavior Mathematical models Scientific Yoen-Ended Tarms Impact assessment Habitat Secure Yoen-Ended Tarms * Lamothery/Open-Ended Tarms Impact assessment Habitat use Species-habitat relations . closar Thereformation 12. No. of Preset UNCLASSIFIED 11 - v + 7pp 18. Availability Statement 22. Preset RELEASE UNLIMITED 23. Security Class Time Record <td>15. Supplementary Notes</td> <td><u>ىتى كىيى بەركىك كىلى باغانىكىنى بىر</u></td> <td></td> <td></td>	15. Supplementary Notes	<u>ىتى كىيى بەركىك كىلى باغانىكىنى بىر</u>		
14. Abstract (Limit 200 words) Habitat preferences of the yellow warbler (Dendroica petechia) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available information on the species-habitat requirements of the species. Habitat use information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities. 17. Decument Analysis & Descriptore Animal behavior Mathematical models Birds Wildlife Habitat Suitability Index Habitat management LOBATINE 13. Security Gase (This Report) Listability Statement 13. Security Gase (This Report) RELEASE UNLIMITED 13. Security Case (This Report) 13. Security Case (This Report) 11 - v + 7pp 20. Security Case (This Report) 22. Prece UNCLASSIFIED 11 - v + 7pp 20. Security Case (This Report) 22. Prece				
18. Abstract (Umit: 200 words) Habitat preferences of the yellow warbler (Dendroica petechia) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available information on the species-habitat requirements of the species. Habitat use information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities. 17. Document Analysis a. Descriptors Animal behavior Mathematical models Birds Wildlife Habitat Suitability Index Habitat management Yellow warbler Impact assessment Patronifer/Open-Ended Terms Yellow warbler Velices - habitat relations doorffer/Open-Ended Terms Yellow warbler Impact assessment Habitat Suitability Index Habitat management Habitat use Species - habitat relations doarffer/Open-Ended Terms 19. Security Class (This Report) It Availability Statement 11. Security Class (This Report) RELEASE UNLIMITED 11 v + 7pp 20. Security Class (This Report) 21. No. of Pages 04100ALASSIFIED 11 v + 7pp 20. Security Class (This Report) 21. No. of Pages <t< td=""><td></td><td></td><td></td><td></td></t<>				
18. Abstract (Limit 200 words) Habitat preferences of the yellow warbler (Dendroica petechia) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available information on the species-habitat requirements of the species. Habitat use information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities. 17. Decument Analysis a. Descriptors Animal behavior Mathematical models Birds Wildlife Habitat Suitability Index Habitat management Yellow warbler Impact assessment Dendroica petechia Impact assessment Habitat suitability Steement 19. Security Class (This Report) 21. No. of Pages 18. Availability Steement 19. Security Class (This Report) 21. No. of Pages 19. Security Class (This Report) 11 - v + 7pp 20. Security Class (This Report) 21. No. of Pages 19. Security Class (This Report) 11 - v + 7pp 11 - v + 7pp 20. Security Class (This Report) 21. No. of Pages 19. Security Class (This Report) 11 - v + 7pp 11 - v + 7pp 20. Security Class (This Report) 21. No. of Pages				
Habitat preferences of the yellow warbler (Dendroica petechia) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available information on the species-habitat requirements of the species. Habitat use information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities. 17. Decument Analysis a. Descriptors Animal behavior Mathematical models Birds Nildiffe Habitat Suitability Index Habitat management * Identifier/Open-Ended Terms Impact assessment Yellow warbler Descriptors Pendroica petechia Impact assessment Habitat Suitability Index Habitat management Species-habitat relations c. cosarn Frenz c. cosarn Frenz/Group 19. Security Class (The Report) 21. No. of Pages 18. Availability Statement 19. Security Class (The Report) 21. No. of Pages RELEASE UNLIMITED 19. Security Class (The Report) 22. Proce 20. Security Class (The Pages) 22. Proce 22. Proce Ster AMSI-223:10 Set Instructions on Reverse OPTIONAL FORM 272	- 15. Abstract (Limit: 200 words)			
17. Document Analysis a. Descriptors Animal behavior Maimal behavior Mathematical models Birds Wildlife Habitat Jubicat Surface Terminer Mathematical models Birds Wildlife Habitat Jacobi Section Mathematical models Birds Wildlife Habitat Jacobi Section Mathematical models Sirds Wildlife Habitat Habitat Section	Habitat proformances of the	o vollow wombles (D	andvoice notechiel a	
17. Decument Analysis a. Descriptors Animal behavior Mathematical models Birds Wildlife Habitat Summark Analysis *. Genement Analysis a. Descriptors Interview of the species and was services on abitat requirements of the species. Habitat use information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities. 17. Decument Analysis a. Descriptors Animal behavior Mathematical models Birds Wildlife Habitat Summark analysis * identifier/Commended Terms Yellow warbler Dendroica petechia Impact assessment Habitat Summark analysis * constructions - constructions * constructions - constructions * constructions - constructions * constructions - is security Class (This Accord) * constr Freus/Group 12. Acc of Preser </th <th>nublication It is one of</th> <th>e yerrow warbier (D</th> <th>endrorea pececina) a</th> <th>(UCI) modele and use</th>	nublication It is one of	e yerrow warbier (D	endrorea pececina) a	(UCI) modele and use
17. Document Analysis a. Descriptors Animal behavior Mathematical models Birds Wildlife Habitat use Dendroica petechia Impact assessment Habitat use Species-habitat relations c.cosAri Free/Grauent ReLEASE UNLIMITED 19. Security Class (The Agent) 21. No. of Pages 11. Security Class (The Agent) 22. Price See ANSI-232.10	dovoloped through an analy	i a series of nabil	at Suitability Index	(HSI) models and was
17. Document Analysis a. Descriptors Animal behavior Mathematical models Birds Wildlife Habitat Mathematical models Birds Wildlife Habitat Impact assessment Habitat Security Class Security Class This Report 21. No. of Pages In Security Class Security Statement 19. Security Class RELEASE UNLIMITED 19. Security Class Sec ANSI-233.10 Sec Instructions on Reserve Optional forms 22. Price Optional forms 22. Price Sec Instructions on Reserve Optional forms 272	ments of the species Hal	ysis ui available l	niormation on the sp	ecies-habitat require-
17. Document Analysis a. Descriptors Animal behavior Mathematical models Birds Wildlife Habitat Impact assessment Habitat Security Class (This Record) Species-habitat relations 19. Security Class (This Record) I. Availability Statement 19. Security Class (This Record) RELEASE UNLIMITED 19. Security Class (This Record) Sec (ANSI-229:13) Sec Instructions on Reverse	literature followed by the	he development of a	n HSI modol docigno	d fon use in impost
17. Document Analysis a. Descriptors Animal behavior Mathematical models Birds Wildlife Habits 'ellow warbler Dendroica petechia Impact assessment Habitat Suitability Index Habitat management Habitat use Species-habitat relations c. cosArt Free/Group 19. Security Class (This Report) 21. No. of Pages 18. Availability Statement 19. Security Class (This Report) 21. No. of Pages RELEASE UNLIMITED 19. Security Class (This Report) 22. Price See AMSI-239.18) See (instructions on Reverse OPTIONAL FORM 272	assessment and habitat ma	nagement activities	n nor moder, designe	a for use in impact
17. Document Analysis a. Descriptors Animal behavior Mathematical models Birds Birds Wildlife Habits b. desintines/Open-Ended Terms Yellow warbler Dendroica petechia Impact assessment Habitat Suitability Index Habitat management Habitat use Species-habitat relations c. COSATI Fled/Group 19. Security Class (This Report) 18. Availability Statement 19. Security Class (This Report) RELEASE UNLIMITED 19. Security Class (This Report) 20. Security Class (This Report) 21. No. of Pages 18. Availability Statement 19. Security Class (This Report) 20. Security Class (This Report) 22. Price 20. Security Class (This Report) 22. Price Stee AMSI-229:10 Security Class (This Report)		nugemento ucorvitores	•	
17. Document Analysis a. Descriptors Animal behavior Mathematical models Birds Wildlife Habits S. (dentifiers/Open-Ended Terms Yellow Warbler Dendroica petechia Impact assessment Habitat Suitability Index Habitat management Habitat use Species-habitat relations cosAtt Field/Group 19. Security Class (This Record) 21. No. of Pages 18. Availability Statement RELEASE UNLIMITED 19. Security Class (This Record) 21. No. of Pages 20. Security Class (This Page) 22. Price 22. Price Stee Instructions on Reverse OPTIONAL FORM 272				
17. Document Analysis a. Descriptors Animal behavior Mathematical models Birds Wildlife Habits *. identifiers/Open-Ended Terms Yellow Warbler Impact assessment Dendroica petechia Impact assessment Habitat Suitability Index Habitat management Habitat use Species-habitat relations c. cosAvi Field/Group 19. Security Class (This Report) 18. Availability Statement 19. Security Class (This Report) RELEASE UNLIMITED 19. Security Class (This Report) 20. Security Class (This Page) 22. Price Stee Instructions on Reverse OPTIONAL FORM 272				
17. Document Analysis a. Descriptors Animal behavior Mathematical models Birds Wildlife Habits				
17. Document Analysis a. Descriptors Animal behavior Mathematical models Birds Wildlife Habits				
17. Document Analysis a. Descriptors Animal behavior Mathematical models Birds Birds Wildlife Habits b. identifier/Open-Ended Terms Impact assessment Habits Impact assessment Habitat Suitability Index Habitat management Habitat use Species-habitat relations c. cosArt Fleid/Group 19. Security Class (This Report) 21. No. of Pages 18. Availability Statement Interpret Class (This Report) 21. No. of Pages RELEASE UNLIMITED 19. Security Class (This Report) 21. No. of Pages See ANSI-229.13) See Instructions on Reverse OPTIONAL FORM 272				
17. Document Analysis a. Descriptors Animal behavior Mathematical models Birds Wildlife Habits b. identifiers/Open-Ended Terms Yellow warbler Dendroica petechia Dendroica petechia Impact assessment Habitat Suitability Index Habitat management Habitat use Species-habitat relations c. cosATI Field/Group 19. Security Class (This Report) 21. No. of Pages 18. Availability Statement Inscript Class (This Report) 21. No. of Pages NELEASE UNLIMITED 19. Security Class (This Report) 22. Price See (Instructions on Reverse OPTIONAL FORM 272				
17. Document Analysis a. Descriptors Animal behavior Mathematical models Birds Wildlife Habits *. identifier/Open-Ended Terms Yellow warbler Impact assessment Habitat Suitability Index Habitat management Habitat use Species-habitat relations c. cosArt Field/Group 19. Security Class (This Report) 21. No. of Pages 18. Availability Statement 19. Security Class (This Report) 21. No. of Pages RELEASE UNLIMITED 19. Security Class (This Report) 22. Price See (Instructions on Reverse OPTIONAL FORM 272				
17. Document Analysis a. Descriptors Animal behavior Mathematical models Birds Wildlife Habits *. identifiers/Open-Ended Terms Yellow warbler Impact assessment Dendroica petechia Impact assessment Habitat Suitability Index Habitat management Habitat use Species-habitat relations c. cosAtt Field/Group 19. Security Class (This Report) 21. No. of Pages 18. Availability Statement UNCLASSIFIED ii - v +7pp 20. Security Class (This Report) 22. Price 22. Price See ANSI-239.18) See Instructions on Reverse OPTIONAL FORM 272				
17. Document Analysis a. Descriptors Animal behavior Mathematical models Birds Wildlife Habits Security Class (This Recort) Security Statement 19. Security Class (This Recort) Habitat suitability Statement 19. Security Class (This Recort) RELEASE UNLIMITED 19. Security Class (This Recort) See ANSI-229.18) 22. Price				
17. Document Analysis a. Descriptors Animal behavior Mathematical models Birds Wildlife Habits denttfiers/Open-Ended Terms Yellow warbler Impact assessment Dendroica petechia Impact assessment Habitat Suitability Index Habitat management Habitat use Species-habitat relations cosArt Field/Group 19. Security Class (This Report) 21. No. of Pages 18. Availability Statement Intervent Class (This Report) 21. No. of Pages NUNCLASSIFIED Ii - v +7pp 20. Security Class (This Page) 22. Price See ANSI-Z39.13) See Instructions on Reverse OPTIONAL FORM 272				
Animal behavior Mathematical models Birds Wildlife Habits b. Identifiers/Open-Ended Terms Yellow warbler <u>Dendroica petechia</u> Impact assessment Habitat Suitability Index Habitat management Habitat use Species-habitat relations c. COSATI Field/Group 13. Availability Statement RELEASE UNLIMITED 14. Availability Statement RELEASE UNLIMITED 15. Security Class (This Report) UNCLASSIFIED 16. V +7pp 20. Security Class (This Page) UNCLASSIFIED 22. Price 22. Price 23. No. of Pages 19. Security Class (This Page) 22. Price 23. No. of Pages 22. Price 23. No. of Pages 22. Price 23. No. of Pages 23. No. of Pages 24. No. of Pages 25. Price 25. Price 26. Price 27. P	17. Document Analysis a. Descriptors		· · · · · · · · · · · · · · · · · · ·	
Birds Wildlife Habits b. identifiers/Open-Ended Terms Yellow warbler Dendroica petechia Impact assessment Habitat Suitability Index Habitat management Habitat use Species-habitat relations c. COSATI Field/Group 18. Availability Statement RELEASE UNLIMITED See Instructions on Reverse OPTIONAL FORM 272	Animal behavior Ma	athematical models		
Wildlife Habits b. identifiers/Open-Ended Terms Yellow warbler Dendroica petechia Impact assessment Habitat Suitability Index Habitat management Habitat use Species-habitat relations c. cosATI Field/Group 19. Security Class (This Report) 21. No. of Pages 18. Availability Statement UNCLASSIFIED 11 - V +7pp 20. Security Class (This Page) 22. Price See ANSI-229.18) See Instructions on Reverse OPTIONAL FORM 272	Birds			
Habits b. Identifiers/Open-Ended Terms Yellow warbler Dendroica petechia Impact assessment Habitat Suitability Index Habitat management Habitat use Species-habitat relations c. COSATI Field/Group 18. Availability Statement RELEASE UNLIMITED <u>19. Security Class (This Report)</u> 21. No. of Pages II. Availability Statement RELEASE UNLIMITED <u>20. Security Class (This Page)</u> 22. Price UNCLASSIFIED 22. Price UNCLASSIFIED 22. Price	Wildlife			
b. identifiers/Open-Ended Terms Yellow warbler Dendroica petechia Impact assessment Habitat Suitability Index Habitat management Habitat use Species-habitat relations c. cosati Field/Group 19. Security Class (This Report) 21. No. of Pages 18. Availability Statement UNCLASSIFIED ii - V +7pp 20. Security Class (This Page) 22. Price See ANSI-Z39.18) See Instructions on Reverse OPTIONAL FORM 272	Habits			
Yellow warbler Impact assessment Dendroica petechia Impact assessment Habitat Suitability Index Habitat management Habitat use Species-habitat relations c. cosATI Field/Group 19. Security Class (This Report) 18. Availability Statement UNCLASSIFIED RELEASE UNLIMITED 19. Security Class (This Page) 20. Security Class (This Page) 22. Price See ANSI-Z29.18) See Instructions on Reverse OPTIONAL FORM 272	b. Identifiers (Open-Endert Terme			
Dendroica petechia Impact assessment Habitat Suitability Index Habitat management Habitat use Species-habitat relations c. COSATI Field/Group 19. Security Class (This Report) 18. Availability Statement 19. Security Class (This Report) RELEASE UNLIMITED 19. Security Class (This Page) 20. Security Class (This Page) 22. Price See ANSI-Z39.13) See Instructions on Reverse	Yellow warbler			
Habitat Suitability Index Habitat management Habitat use Species-habitat relations Species-habitat relations 19. Security Class (This Report) I& Availability Statement 19. Security Class (This Report) RELEASE UNLIMITED 11 - V +7pp 20. Security Class (This Page) 22. Price See ANSI-Z39.13) See Instructions on Reverse	Dendroica petechia	Impact as:	sessment	
Habitat use Species-habitat relations 21. No. of Pages 18. Availability Statement RELEASE UNLIMITED 19. Security Class (This Report) UNCLASSIFIED 21. No. of Pages 20. Security Class (This Page) UNCLASSIFIED 22. Price See ANSI-Z39.13) See Instructions on Reverse OPTIONAL FORM 272	Habitat Suitability Index	Habitat ma	anagement	
Species-habitat relations c. cosATI Field/Group 18. Availability Statement 19. Security Class (This Report) 21. No. of Pages RELEASE UNLIMITED UNCLASSIFIED ii - V +7pp 20. Security Class (This Page) 22. Price UNCLASSIFIED 22. Price See ANSI-Z39.13) See Instructions on Reverse OPTIONAL FORM 272	Habitat use		· · · -	
c. COSATI Field/Group 18. Availability Statement RELEASE UNLIMITED 19. Security Class (This Report) UNCLASSIFIED 21. No. of Pages ii - V +7pp 20. Security Class (This Page) UNCLASSIFIED 22. Price See ANSI-Z39.13) See Instructions on Reverse OPTIONAL FORM 272	Species-habitat relations			
18. Availability Statement 19. Security Class (This Report) 21. No. of Pages RELEASE UNLIMITED UNCLASSIFIED ii - v +7pp 20. Security Class (This Page) 22. Price See ANSI-Z39.13) See Instructions on Reverse OPTIONAL FORM 272	c. COSATI Field/Group			
See ANSI-Z39.18) See Instructions on Reverse OPTIONAL FORM 272	18. Availability Statement		19. Security Class (TI NCL ASSTI	his Report) 21. No. of Pages
See ANSI-Z39.13) See Instructions on Reverse OPTIONAL FORM 272	NELEASE UNLIMITED		20 Security Class (1)	his Page) 22 Price
See ANSI-Z39.18) See Instructions on Reverse OPTIONAL FORM 272			UNCLASSI	FIED
	See ANSI-Z39.18)	See instructio	ns on Reverse	OPTIONAL FORM 272

|--|

5

٠

•

ţ

F

U.S. FISH AND WILDLIFE SERVICE REGIONAL OFFICES

REGION 1

Regional Director U.S. Fish and Wildlife Service Lloyd Five Hundred Building, Suite 1692 500 N.E. Multnomah Street Portland, Oregon 97232

REGION 2

Regional Director U.S. Fish and Wildlife Service P.O. Box 1306 Albuquerque, New Mexico 87103

REGION 3

Regional Director U.S. Fish and Wildlife Service Federal Building, Fort Snelling Twin Cities, Minnesota 55111

REGION 4

Regional Director U.S. Fish and Wildlife Service Richard B. Russell Building 75 Spring Street, S.W. Atlanta, Georgia 30303

REGION 5

Regional Director U.S. Fish and Wildlife Service One Gateway Center Newton Corner, Massachusetts 02158

REGION 6

Regional Director U.S. Fish and Wildlife Service P.O. Box 25486 Denver Federal Center Denver, Colorado 80225

REGION 7

Regional Director U.S. Fish and Wildlife Service 1011 E. Tudor Road Anchorage, Alaska 99503

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

HABITAT SUITABILITY INDEX MODEL

RIPARIAN SONGBIRD GUILD

HUMBOLDT BAY, CALIFORNIA

Prepared for:

California State Coastal Conservancy County of Humboldt, Department of Public Works Humboldt Bay Working Group

Prepared by:

R. Chad Roberts, Ph.D. Oscar Larson & Associates 317 Third Street, P. O. Box 3806 Eureka, CA 95501 707-445-2043

August 1986

© 1986, R.C. Roberts and Oscar Larson & Associates. Permission is granted to copy this document for Habitat Suitability Index analysis and scientific study purposes. Copying for other uses without permission of the author is prohibited.

Table of Contents

· · · · · · · · · · · · · · · · · · ·	Page	
INTRODUCTION	1	
LIFE HISTORY OVERVIEW	2	
HABITAT REQUIREMENTS	3	
HABITAT SUITABILITY INDEX (HSI) MODEL		
Model Applicability Description of the Model Suitability Index (SI) Graphs for Model Variables HSI Determination	4 5 6 9	
FIELD USE OF THE MODEL-SAMPLING		
OTHER MODELS		
ACKNOWLEDGEMENTS		
REFERENCES		
ATTACHMENTS		
A List of Species Covered by this Model		

B Electronic Model Version -- Printout

List of Tables

Table 1Suggested measurement techniques for13variables in the model

•

.

List of Figures

		Page
Figure 1	Suitability Index Graphs	7
Figure 2	Model Tree Diagram and Documentation	11

HABITAT SUITABILITY INDEX MODEL

RIPARIAN SONGBIRD GUILD

HUMBOLDT BAY, CALIFORNIA

Prepared by:

R. Chad Roberts, Ph.D. Oscar Larson & Associates P.O. Box 3806 Eureka, CA 95501 707-445-2043

INTRODUCTION

This is a habitat suitability index model for songbird species that use forested or scrub-shrub wetlands (Cowardin <u>et al.</u> 1979) in the Humboldt Bay watershed in northern California; these wetlands are defined further below. The model can be used in determining existing habitat values, and in projecting habitat values at sites restored as wetlands. In addition, the model can be used to determine mitigation requirements for developments proposed to be sited in wetlands.

The model may be useful in determining habitat suitability in other wetland areas along the Pacific coast. Such application will require that users examine the model in order to determine whether local use necessitates model modification.

The model is based upon a review and synthesis of existing information, derived from the scientific literature, unpublished research reports available from Humboldt State University, comments from local biologists, and the author's personal observations. It is an hypothesis of species/habitat relationships, and is not a statement of proven cause and effect. It represents suspected relationships between habitat factors and the carrying capacity of the habitat for species in the guild. The model is scaled to produce a Habitat Suitability Index (HSI) value between 0.0 (unsuitable habitat) and 1.0 (optimally suitable habitat). Further discussion of HSI models may be obtained from part 103 of the Ecological Services Manual (see references).

This model has not been reviewed by species experts. The model has been reviewed by individuals familiar with HSI modelling, and modified according to their comments. The model has not been tested in the field.

The model is based on the perception that songbird species of riparian or swamp wetlands in the Humboldt Bay watershed form a guild in the sense used by Root (1967), Holmes <u>et al.</u> (1979), and Verner (1984). Further discussion of
this use of the guild concept will be provided separately. This use of the term does not correspond to that advanced by Short (1983, 1984; Short and Burnham 1982).

Riparian habitat is used by a number of bird species, from a variety of avian families. This model is restricted to species that use the plants within this habitat directly for food, either through consumption of plant materials or through consumption of invertebrates that consume the plants, and that also nest (or potentially nest) within the habitat type. Most such species are members of the avian order Passeriformes. This model also addresses habitat needs of species in the order Piciformes (woodbeckers), at least two of which may be encountered foraging with passerines during the winter.

LIFE HISTORY OVERVIEW

Bird species potentially covered by this model include resident (i.e., remaining in the watershed all year), breeding visitor (here from spring through early fall), and winter visitor (here from fall through early spring) species. Examples of the three groups include: (i) resident - Chestnut-backed Chickadee (scientific names of all species are included in Attachment A), Downy Woodpecker, and Winter Wren: (ii) breeding visitor - Wilson's Warbler, Swainson's Thrush, and Tree Swallow: and (iii) winter visitor - Ruby-crowned Kinglet, Yellow-rumped Warbler, and Fox Sparrow. Additional species (such as the American Robin) are present all year, but probably are represented by different individuals in the winter and breeding seasons.

A vast quantity of ornithological and ecological literature exists covering the use of riparian wetlands by passerine and other birds; it is inappropriate to cite or synopsize it all here, but interested readers may wish to review Stevens <u>et al.</u> (1977), Hehnke and Stone (1979), Gaines (1980), Swift <u>et al.</u> (1984), and a number of papers in Warner and Hendrix (1984). There are currently two Master's thesis projects underway at Humboldt State University that include investigations of use of riparian and/or swamp habitats by songbirds in the Humboldt Bay area; one has resulted in interim reports that are useful in this analysis (Kelly 1983).

The specific habitat requirements of the species in this guild are rather varied. It is not the purpose of the model to address the conditions that would make riparian habitat more or less desirable for the individual species. The ecological backgrounds of the species are also varied; some species are almost completely "insectivorous" (consumers of arthropods), while some are primarily seed-eaters, and yet others consume both arthropods and seeds, as well as other plant material (see Martin et al 1951).

In order to address this variability, attention must be restricted to common elements in the ecology of the species. James (1971) demonstrated a "niche gestalt" for each of a number of passerine species. This interpretation is commonly adopted by ornithologists, and a number of "guild" studies (e.g., Holmes <u>et al.</u> 1979) utilize the concept of habitat conformation as a major element in defining guild membership. That approach is used in this model.

The bird species covered here are generally associated with deciduous tree and shrub species. It appears that the annual burst of production in the spring provides food for arthropods that compose the primary diet of most species, or food for the birds themselves. There is a general recognition that the diversity of bird species in an area generally is correlated with the vertical and horizontal foliage distribution (MacArthur and MacArthur 1961, Roth 1976, Holmes et al. 1979, Niemi and Hanowski 1984, Swift et al. 1984, and many others). Greater diversity in foliage distribution thus generally leads to greater bird species diversity. This correlation essentially ignores the actual relationship between productivity and reproductive success that presumably underlies the evolution of the habitat preferences.

It has been noted (e.g., Sturman 1968) that one of the species in this guild that is present in this watershed (the Chestnut-backed Chickadee) may respond to the presence or abundance of coniferous tree species. Observations in this region, and in other parts of California in which this species occurs, indicate that the chickadee does in fact use deciduous vegetation regularly. However, inclusion of conifers in riparian wetlands in the vicinity of Humboldt Bay has been recognized as the natural condition in these wetlands prior to settlement by European man (see Ray et al. 1984). For the purposes of this model, no differentiation will be made between deciduous and coniferous vegetation.

The distribution of foliage provides nesting substrate for the birds (each according to the appropriate niche gestalt). Some species in the guild are primary or secondary cavity nesters (secondary = using holes made by primary excavators). Cavity nesters generally use dead wood, rather than nesting in live trees. Thus, the presence of snags or other dead substrate is an important element for some species in the guild (see Schroeder 1982b, 1982c).

HABITAT REQUIREMENTS

This model addresses life requisites of food and foraging, reproduction (nesting), and cover. It is assumed that water is not limiting for any species, and no explicit element for water is included in this model. Food and foraging substrate are considered to be provided by woody vegetation. Shrubs are considered to be live woody stems up to 3 meters (10 feet) tall. Live woody stems greater than 3 m tall are considered to be trees. This model will not differentiate between single and multiple tree canopy layers, with possibly higher habitat values because of the presence of additional layers. primarily for logistical reasons.

Stem diameter is not considered for foraging purposes, although it is clear that scansorial (trunk- and limb-foraging) birds will experience greater habitat value as basal area increases (e.g., see Schroeder 1982c).

Similarly, cover is considered to be provided by vegetation; separate variables to differentiate between foraging and cover substrates are not included in the model.

Reproduction substrate is provided for these species by the plants that also provide cover and foraging substrate. The volume of space that potentially offers nesting sites increases proportionally with the total volume of plant leaf area. A further consideration for nesting substrate is the availability of snags of suitable size, to accommodate cavity nesters.

HABITAT SUITABILITY INDEX [HS]] MODEL

Model Applicability. This model was developed to address habitat needs within the Humboldt Bay watershed. The model is also expected to apply to coastal wetlands elsewhere on California's northern coast, although the full range of geographical applicability is not defined. The model may be applicable (with suitable modifications) to other coastal and noncoastal wetland areas in California and Oregon; many northwestern California wetlands are more similar to those of Oregon than to wetlands farther south in California. There is no intended seasonal applicability, inasmuch as the habitats covered by the model are used by different members of the guild in all four seasons.

Wetlands included in the habitats that could be evaluated by this model are: (i) riparian woodlands along streamcourses that enter the bay; (ii) swamps dominated by willows (Salix spp.), alders (Alnus nregona), and waxmyrtles (Mxrira ralifornica), most of which occur in saturated or poorly drained soils; and (iii) similar wetlands with emergent woody vegetation. Cowardin et al. (1979) note that scrub-shrub and forested wetlands are restricted to "palustrine" and "estuarine" wetlands; in Humboldt Bay, only palustrine wetlands include these habitats. Readers should review Cowardin et al. (1979) for additional information regarding classification of wetlands, and examples of wetland habitats.

One variable used in the model (number six, below) requires information that may be obtained from maps or aerial photographs. All other variables require field sampling. Model users are expected to exercise adequate rigor in sampling and analysis, so that statistical validity is ensured. Although there is no mandatory season for sampling, it is recommended that sampling be conducted when tree and shrub canopies are in leaf.

The model is intended to be applied to habitat areas that may not be entirely one cover type (i.e., a site may contain emergent wetland as well as woody vegetation). This formulation accommodates changes in wetland area through time, as would be expected in wetland restoration or enhancement projects; suitability is related to the fraction of the area presenting appropriate habitat conditions. A functionally similar (but not exactly identical) model would result if the sixth variable were omitted and the model applied only to ripation to trata and the wetlands. As noted below, the model includes a "minimum area" assumption, a requirement that the model only be applied to habitat areas with at least 20 square meters of riparian vegetation.

Description of the Model. This model is based upon the two basic habitat parameters noted above, the presence and volume of foliage and the presence of suitable snags. The model uses several variables to account for foliage characteristics. This is considered appropriate, in view of the presumed importance of foliage in providing foraging area, cover, and nesting substrate for most of the species in this guild. The model includes one variable covering snag availability. It also includes a variable scaling the suitability of an evaluation site according to the fraction of the site that has appropriate vegetation.

The first and second variables relate suitability to the percent of canopy closure in two vegetational layers. Canopy closure is directly related to canopy foliage volume (see, for example, Hays <u>et al.</u> 1981). Each variable relates to foliage volume in two horizontal dimensions within a specific "layer" of the habitat (see next section). Site suitability increases with foliage volume, until there is enough foliage to begin shading lower layers, thus reducing ecological productivity in those layers. It is to be expected, therefore, that intermediate values for canopy closure provide optimal habitat. The third variable scales foliage volume in the vertical dimension.

The first and second variables are expressed as canopy cover, which is the percentage of the ground surface covered by a vertically downward projection of aerial foliage. While some ecological studies express cover in terms of specific layers or of total numbers of foliage layers, this model will use cover in the botanical sense as just defined.

The assumption that intermediate cover values are optimal follows from the use of ground-level vegetation by species that should be evaluated by this model. Complete canopy closure generally leads to a loss of live ground cover. Ground cover vegetation is not measured by this model: however, incomplete canopy cover in the shrub and tree layers is anticipated to lead to appropriate live plants at ground level.

All of the above variables are scaled by the fourth variable to reflect the overall canopy "layering" within the vegetation. Habitat value increases as the amount of layering increases (see next section for details).

The fifth variable in this model is a measure of the density of snags of minimally acceptable size for cavity nesters. Site suitability increases with snag density until optimal conditions are reached. This may not address site suitability adequately for some habitat conditions, as both more snags and larger snags may improve a site for some bird species. However, it is believed that the variable incorporated into this model addresses the needs of the small passerine and woodpecker species primarily covered by this model. The sixth variable scales the habitat value in direct proportion to the fraction of the site that provides the other variables. If there is no woody riparian vegetation, the site care that a respectively it is presumed that a vegetation patch must have a minimum area of approximately 20 square meters (about 215 square feet) to provide habitat utility.

Suitability Index ISII Granhs for Model Variables. Following in Figure 1 are graphic representations of presumed relationships between habitat variables and habitat suitability. The SI values are read directly from the graph (1.0 = optimal suitability; 0.0 = no suitability) for each variable. The rationale for developing each graph is presented below.

Variable 1: DSCCP - Percent shrub (1 - 3 meter tall) canopy cover. The model assumes that foliage must be present before the habitat is suitable at all. This variable is structured to reflect habitat utility when the foliage in the shrub canopy covers at least 10 percent of the ground surface (see previous section). Suitability increases to an optimum when 50% - 75% of the site has shrub canopy cover. These cover levels provide relatively dense foliage within the shrub layer, while allowing some light to pass through to the ground level.

As the canopy closes, lower light levels at the ground surface restrict vegetation growth. It appears that there will be a tradeoff between increased suitability for species that use the shrub canopy and decreased suitability for species that use the forest floor. The SI value is assumed to decrease to 0.6 at 100% canopy closure. This value greater than one-half should reflect the contribution to habitat of the foliage volume in three dimensions above the ground, as contrasted with the two dimensions at ground level. It should be noted that this variable is modified from Schroeder (1982a).

Variable 2: CC3MP - Percent tree (greater than 3 meter tall) canopy cover. This variable is similar to variable 1. At least 10% of the site's ground surface must lie under tree canopy for any suitability to exist. Suitability increases to optimum levels at 50% to 75% cover, then decreases to intermediate values as canopy cover approaches 100% (for identical reasoning).

This variable does not differentiate the canopy into lower and higher levels, as the expected use of the model is within riparian or swamp habitats near Humboldt Bay, where canopy heights rarely exceed 6 m and one canopy layer. Were the model to be applied to other riparian forests, where canopy heights can reach 10 m, and where there may be more than one distinct tree canopy layer, it would be appropriate to restructure this variable (or the entire model) to reflect the additional layering. This variable is modified from Schroeder (1982b).

Variable 3: NAHOT - Average height of overstory trees (in meters). This variable reflects the vertical dimension of the foliage; habitat utility should increase with the value of the variable. As with other variables in the model, a threshold exists; vegetation must be at least 1 m tall before it provides habitat value. The SI increases with canopy height until the height

Percent Tree (> 3 m tall) Canopy Cover

FIGURE 1A - SUITABILITY INDEX GRAPHS

OSCAR LARSON & ASSOCIATES

Average Height (m) of Overstory Trees

FIGURE 1B - SUITABILITY INDEX GRAPHS

OSCAR LARSON & ASSOCIATES

ł

reaches 6 m (20 feet). Willows and other trees in Humboldt Bay riparian habitats seldom exceed this height, and it thus represents an approximate maximum value. This variable is modified from Schroeder (1982b).

•

<u>Variable 4</u>: CNLAY - Canopy layering categories (1, 2, 3, 4, or 5). This variable requires an input scalar value from the user, depending upon the general conformation of the habitat. The scalar values and the associated SI values are shown in Figure 1: Category 1 - no woody vegetation; Category 2 - low shrubs, less than a meter tall; Category 3 - tall shrubs, 1 to 3 m tall; Category 4 - trees, more than 3 m tall but without woody understory; and Category 5 - multiple layers of woody vegetation, with both trees and shrubs present.

This variable is used in the model to scale vertical habitat heterogeneity. Greater value follows from more diverse habitat. Alternate measures of this variable are available (e.g., MacArthur and MacArthur 1961), but this formulation is more direct and is easier to measure.

Variable 5: DSNAG10 - Number of snags greater than 10 cm diameter at breast height (dbh) per 0.4 hectare (greater than 4 inches dbh per acre). Since several members of this guild require cavities, the suitability of a site increases with the density of snags of appropriate size. This variable produces a linear increase in suitability if any snags at least 10 cm in diameter are present, reaching an optimum when three or more are present per acre.

Were this model to be applied to more diverse riparian habitats than Humboldt Bay, this variable should be modified to require larger snags for optimum suitability. Small trees and snags are adequate for small bird species, but do not serve for large birds, or for mammals and other potential cavity users. This variable is modified from Schroeder (1982b, 1982c); the optimum level of 3 snags per acre is a compromise from the two previous models.

Variable 6: APWRV - Percent of the site in woody riparian vegetation. This variable scales the habitat suitability of a site according to the fraction that provides appropriate vegetation. From a threshold value at 5% of the site, the value increases linearly to optimality when 100% of the site provides riparian vegetation. As noted above, a presumed threshold size of 20 square meters of woody vegetation is required for this variable to be applicable.

HSI Determination. The riparian songbird guild model is shown in Figure 2; a printout of the electronic version of the model is included in Attachment B.

The overall suitability of a riparian or swamp wetland for the species in Attachment 1 is evaluated by this model in terms of the distribution of foliage, by the presence and number of snags, and by the fraction of the evaluation site containing such vegetation. Variables 1 through 4 in the model address vegetation, and the remaining parameters are addressed by

Percent of Site in Woody Riparian Vegetation

FIGURE 1C - SUITABILITY INDEX GRAPHS

OSCAR LARSON & ASSOCIATES

TREE DIAGRAM FOR THE RIPARIAN SONGBIRD GUILD MODEL

DOCUMENTATION

- Values of input variables are entered according to variable definitions and Table 1.
- 2. Function code "4" is a geometric mean; e.g., $Y = (X_1 + X_2)^{\frac{1}{2}}$.
- 3. Function code "7" is a graph; see Figure 1. Output from graph is a value $0.0 \le Y \le 1.0$.
- 4. Function code "8" is a user-specified function. Input values (left side of function code in figure) are numbered 1, 2, etc., from top down.

Equations are: 8_a : $Y = (X_1 + X_2 + 2.0*X_3)/4.0$. 8_b : see Figure 1b. 8_c : HSI = $((X_1 + X_2)/2.0) * X_3$.

FIGURE 2 - MODEL TREE DIAGRAM AND DOCUMENTATION

- OSCAR LARSON & ASSOCIATES

variables 5 and 6 respectively.

Variables 1, 2, and 3 are combined in the model to reflect the volume of foliage present. The first two variables reflect horizontal foliage distributions, and the third the vertical distribution. Foliage in the shrub and tree canopy layers of the relatively low thickets in the watershed is assumed to be continuous, and the values for the two variables are deemed to be compensatory; a single value reflecting horizontal foliage dimensions is achieved by averaging the two variables.

The vertical dimension is incorporated into this model as part of the averaging calculation, to reflect the compensation between "layers." This variable is weighted at twice the value of the former variables, however, so that suitability calculations emphasize the vertical foliage distribution. Half of the output from the user-specified function thus relates to horizontal, and half to vertical, foliage distribution (see Fugure 2).

The intermediate suitability index value provided by the calculation above is modified in the model by the suitability index derived from the canopy layering present. The model combines the foliage variables via a geometric mean function. This is used to reflect the partial compensation between foliage volume and layering criteria, and the increased departure from optimum conditions when either of the factors is much less than optimum. The output from this computation thus emphasizes any departure from optimum foliage distribution conditions.

The habitat suitability index (HSI) is computed in the model with a user specified function. The function calculates the arithmetic mean of the foliage and snag variable values. This is appropriate when the variables are fully compensatory, so that high values of one offset low values of the other. This appears reasonable in this case; good foraging area might not provide many snags for nesting (or vice versa), but the favorability of the site for foraging still maintains a relatively high utility for the habitat. The function also reduces the index value according to the fraction of the site that is not in appropriate vegetation.

In general terms, the HSI value is determined approximately half by foliage value and half by snag value. About a quarter of the value relates to canopy layering, and a quarter to the combination of cover values and total canopy height.

FIELD USE OF THE MODELS - SAMPLING

Suggested sampling techniques for the variables in the riparian songbird guild HSI model are indicated in Table 1. Readers should consult Hays <u>et al.</u> (1981) for specific discussion of sampling techniques useful in determining habitat suitability. Other sampling techniques may be substituted if equivalent results are produced. Table 1. Suggested measurement techniques for variables in the riparian songbird guild model.

• .

,

Variable	Suggested Measurement Technique
DSCCP: percent shrub (1-3 m tall) canopy cover.	Establish a baseline transect through the habitat area. At regular intervals, establish sample transects perpendicular to the baseline. Using a random sampling procedure (such as random numbers to determine distances along transects), establish sample plots at least 1 square meter in area. Estimate percentage shrub canopy cover (the area on the ground surface covered by aerial foliage of woody-stemmed plants 1 to 3 meters tall) to the nearest 5% interval. Recommended: sample at least 20 points. Compute average coverage for all samples.
CC3MP: percent tree (>3 m tall) canopy cover.	Establish a baseline transect as above, with sampling transects perpendicular to baseline. Sample as for DSCCP, except that percentage cover should be estimated for trees (woody plants >3 m tall). Recommended: sample at least 20 points. Compute average coverage for all samples.
NAHOT: average height (m) of overstory trees.	Use sample points identified for CC3MP. Obtain a single measurement of tree canopy height for each point. Measure canopy height as the tallest (highest) vegetation in the quadrat sampled. Compute average of all sampled values.
	[Note: if there are no trees (plants >3 m tall), measure the canopy height of shrubs.]
CNLAY: canopy layering category (1, 2, 3, 4, or 5).	For each sample point for DSCCP and CC3MP, record the presence or absence of trees, shrubs (as defined above), and woody stems <1 m tall. When sampling is complete, inspect these records. Assign an ordinal value (1, 2, 3, 4, or 5) according to these records, <u>considering all data together</u> .
	[Note: this variable is intended to involve the user's judgement about the entire site. The value assigned should be biologically justifiable.]
DSNAG10: number of snags >10 cm diameter at breast height (dbh) per 0.4 ha (>4 inches dbh per acre).	For each sample point for DSCCP and CC3MP, record the number of snags in the quadrat meeting this screening criterion (>10 cm dbh). Compute the total number of snags observed and the total area sampled. Convert to 0.4 ha (acre) density value.
APWRV: percent of the site in woody riparian vegetation.	Using aerial photo or map of entire evaluation area, compute total area. Also compute area covered by woody "riparian" vegetation. Divide latter area by total and multiply by 100.
	Alternatively, lay out a grid of points over entire evaluation area; ensure that grid covers the entire study area, but exclude all areas outside study boundary. Tally the number of grid points falling in appropriate vegetation, divide by the total number of grid points, and multiply by 100.

OTHER MODELS

The U.S. Fish & Wildlife Service has published HSI models for the Yellow Warbler (Schroeder 1982a), the Black-capped Chickadee (Schroeder 1982b), and the Downy Woodpecker (Schroeder 1982c). The third species is resident in the Humboldt Bay watershed, and the first uses habitats here during migration. The Chestnut-backed Chickadee uses habitats somewhat like those used by the Black-capped Chickadee (see above and Sturman 1968). The three published models were reviewed in preparing this model, and portions were incorporated. The author is not aware of other published or unpublished HSI models for species in this guild, or of models in any stage of development for the guild as a whole.

ACKNOWLEDGEMENTS

This model was prepared under contract with the California State Coastal Conservancy. Preliminary research regarding habitat variables was conducted under contract with the County of Humboldt. Assistance from Liza Riggle of the Conservancy and from Don Tuttle and Andrea Pickart of the County of Humboldt Department of Public Works made model development possible. HSI modelling software was obtained from the Western Energy and Land Use Team, U.S. Fish & Wildlife Service, Fort Collins, Colorado.

REFERENCES

- Cowardin, L.M., V. Carter, F.C. Goblet. and E.T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. U.S. Fish Wildl. Serv. FWS/OBS - 79/31. 108 pages.
- Gaines, D.A. 1980. The valley riparian forests of California: their importance to bird populations. Pages 57 - 85, in: Sands, A. (ed.): Riparian Forests of California. Univ. California Div. Agric. Sci. Publ. No. 4101.
- Hays, R.L., C.S. Summers, and W. Seitz. 1981. Estimating wildlife habitat variables. U.S. Fish Wildl. Serv. FWS/OBS - 81/47. 111 pages.
- Hehnke, M., and C.P. Stone. 1979. Value of riparian vegetation to avian populations along the Sacramento River system. Pages 228 - 235, in: Johnson, R.R., and J.F. McCormick (tech. coord.); Strategies for protection and management of floodplain wetlands and other riparian ecosystems. USDA For. Serv. Gen. Tech. Rep. WO - 12.

Holmes, R.T., R.E. Bonney, Jr., and S.W. Pacala. 1979. Guild structure of the

Hubbard Brook bird community: a multivariate approach. Ecology 60:512 - 520.

- James, F.C. 1971. Ordinations of habitat relationships among breeding birds. Wilson Bull. 83:215 - 236.
- Kelly, J.P. 1983. The value of riparian forest habitats to bird populations in the Eel River delta, Humboldt County, California. Unpub. interim reports: No. 1. 8 pages; No. 2, 8 pages; No. 3, 13 pages. Dept. Wildl. Manage., Humboldt State Univ., Arcata, CA.
- MacArthur, R.H., and J.W. MacArthur. 1961. On bird species diversity. Ecology 42:594 - 598.
- Martin, A.C., H.S. Zim, and A.L. Nelson. 1951. American wildlife and plants a guide to wildlife food habits. Dover Publ., New York. 509 pages.
- Niemi, G.J., and J.M. Hanowski. 1984. Relationships of breeding birds to habitat characteristics in logged areas. J. Wildl. Manage. 48:438 - 443.
- Ray, D., W. Woodroof, and R.C. Roberts. 1984. Management of riparian vegetation in the northcoast region of California's coastal zone. Pages 660 - 672, in: Warner, R.E., and K. Hendrix (ed.); California riparian systems. Univ. California Press.
- Root, R.B. 1967. The niche exploitation pattern of the Bluegray Gnatcatcher. Ecol. Monogr. 37:317 - 350.
- Roth. R.R. 1976. Spatial heterogeneity and bird species diversity. Ecology 57:773 782.
- Schroeder, R.L. 1982a. Habitat suitability index models: Yellow Warbler. U.S. Fish Wildl. Serv. FWS/OBS - 82/10.27. 7 pages.
- Schroeder, R.L. 1982b. Habitat suitability index models: Black-capped Chickadee. U.S. Fish Wildl. Serv. FWS/OBS - 82/10.37. 12 pages.
- Schroeder, R.L. 1982c. Habitat suitability index models: Downy Woodpecker. U.S. Fish Wildl. Serv. FWS/OBS - 82/10.38. 10 pages.
- Short, H.L. 1983. Wildlife guilds in Arizona desert habitats. Bur. Land Manage. Tech. Note 362. 269 pages.
- Short, H.L. 1984. Habitat suitability index models: the Arizona guild and layers of habitat models. U.S. Fish Wildl. Serv. FWS/OBS - 82/10.70. 37 pages.
- Short, H.L., and K.P. Burnham. 1982. Technique for structuring wildlife guilds to evaluate impacts on wildlife communities. Special Sci. Rep. - Wildl., No. 244: U.S. Fish Wildl. Serv. 34 pages.

- Stevens, L.E., B.T. Brown, J.M. Simpson, and R.R. Johnson. 1977. The importance of riparian habitat to migrating birds. Pages 156 - 164, in: Johnson, R.R., and D.A. Jones (tech. coord.); Symp. on the importance, preservation, and management of riparian habitat. USDA For. Serv. Gen. Tech. Rep. RM - 43.
- Sturman, W.A. 1968. Description and analysis of breeding habitats of the chickadees <u>Parus atricapillus</u> and <u>P. rufescens</u>. Ecology 49:418 431.
- Swift, B.L., J.S. Larson, and R.M. DeGraaf. 1984. Relationship of breeding bird density and diversity to habitat variables in forested wetlands. Wilson Bull. 96:48 - 59.
- U.S. Fish and Wildlife Service. 1981. Standards for the development of Habitat Suitability Index models. Ecological Services Manual part 103.
- Verner, J. 1984. The guild concept applied to management of bird populations. Environ. Manage. 8:1 - 14.
- Warner, R.E., and K.M. Hendrix (ed.). 1984. California riparian systems. Univ. California Press. xxix plus 1035 pages.

ATTACHMENT A

ē

The following species are expected to derive habitat utility from the riparian or "swamp" habitat type covered by this model. This is considered a minimum list; other species not recorded here also should benefit. Listing order is taxonomic, and does not imply importance, abundance, or degree of benefit. The list is based upon references cited in the model.

Taxonomic Name	Common Name
Picoides pubescens	Downy Woodpecker
Picoides villosus	Hairy Woodpecker
Empidonax difficilis	Western Flycatcher
Tachycineta bicolor	Tree Swallow
Parus rufescens	Chestnut-backed Chickadee
Troglodytes troglodytes	Winter Wren
Turdus migratorius	American Robin
Ixoreus naevius	Varied Thrush
Catharus guttatus	Hermit Thrush
Catharus ustulatus	Swainson's Thrush
Regulus calendula	Ruby-crowned Kinglet
Vermivora celata	Orange-crowned Warbler
Dendroica petechia	Yellow Warbler
Dendroica coronata	Yellow-rumped Warbler
<u>Wilsonia</u> pusilla	Wilson's Warbler
Carduelis tristis	American Goldfinch
Passerella iliaca	Fox Sparrow
Melospiza melodia	Song Sparrow

ATTACHMENT B

LIBRARY: B:HUMBAY.LIB 07-26-1986

10DEL # 5

٢

10DEL NAME: RIPARIAN SONGBIRD GUILD AUTHOR DRAFT 04-15-1986

3chroeder. R.L. 1982. Habitat suitability index models: Yellow Warbler. J.S. Dept. Int. Fish. Wildl. Serv. FWS/OBS-82/10.27. 7 pp.

Schroeder. R.L. 1982. Habitat suitability index models: Black-capped Chickadee. U.S. Dept. Int. Fish. Wildl. Serv. FWS/OBS-82/10.37. 12 pp.

Schroeder. R.L. 1982. Habitat suitability index models: Downy Joodpecker. U.S. Dept. Int. Fish. Wildl. Serv. FWS/OBS-82/10.38. 10 p.

See written version for further references.

>SCCP Percent shrub (1-3m tall) canopy cover.
>CGMP Percent tree (>3m high) canopy cover.
>AHOT AVERAGE HEIGHT OF OVERSTORY TREES (M)
>NLAY Canopy layering categories (1.2,3,4, or 5) - see model documentation.
>SNAG10 Number of snags >10cm dbh per 0.4 ha (>4 in dbh per acre).
>PWRV Percent of site in woody riparian vegetation.

JRAPH FUNCTION AT LEVEL 4 . POSITION 1 Title: DSCCP $\times =$ 0.000 Y= 0.000 10.000 0.000 50.000 1.000 75.000 1.000 100.000 0.600 110.000 0.600

3RAPH FUNCTION AT LEVEL 4 . POSITION 2 Title: CC3MP X= 0.000 Y= 0.000 10.000 0.000 50.000 1.000 75.000 1.000 100.000 0.600

0.600

110.000

odel: RIPARIAN SONGBIRD GUILD (continued)

RAPH FUNCTION AT LEVEL 4 . POSITION 3 Title: HOT X= 0.000 Y= 0.000

	1.000	0.000
•.	6.000	1.000
	7.000	1.000

SER-SPECIFIED FUNCTION AT LEVEL 3 , POSITION 1 SUB = (X(1)+X(2)+2.*X(3))/4.

SER-SPECIFIED FUNCTION AT LEVEL 3 . POSITION 2 F X(1)<>1 AND X(1)<>2 AND X(1)<>3 AND X(1)<>4 AND X(1)<>5 THEN PRINT:PRINT"*** ERROR IN INPUT***": PRINT "VALUE FOR CNLAY MUST BE 1. 2. 3. 4. OR 5. ": PRINT "PRESS ANY KEY TO RETURN TO DATA MODIFICATION MENU - "::Z\$ = INPUT\$(1):GOTO 9010 $F \times (1) = 1$ THEN USUB = 0 $F \times (1) = 2$ THEN USUB = .25 $F \times (1) = 3$ THEN USUB = .5 $F \times (1) = 4$ THEN USUB = .75 $F \times (1) = 5$ THEN USUB = 1. RAPH FUNCTION AT LEVEL 2 . POSITION 2 Title: SNAG10 Y =0.000 X =0.000 3.000 1.000 4.000 1.000 RAPH FUNCTION AT LEVEL 2 . POSITION 3 PWRV Title: X= 0.000 Υ= 0.000 5.000 0.000 1.000 100.000 110.000 1.000 SER-SPECIFIED FUNCTION AT LEVEL 1 . POSITION 1

|SUB| = ((X(1)+X(2))/2.)*X(3)

· · ·

FILE COP'

COMMUNITY-BASED HABITAT SUITABILITY INDEX MODEL FOR THE RIPARIAN FOREST COVER-TYPE ALONG LLAGAS CREEK

Adapted from a model used by the HEP team evaluating impacts of proposed riprap bank protection along the lower Sacramento River

> As Revised September 2001

BACKGROUND: The cover-type model described here is for Riparian Forest Cover. This cover-type is defined as a stand of woody vegetation composed of primarily trees greater than 20-feet-tall. The Riparian Forest cover-type model identifies and quantifies characteristics of this cover type which are important to a wide array of wildlife. The model does not attempt to portray exactly the needs of any one species, but rather it broadly portrays the needs of many species or species groups of riparian zones along Llagas Creek.

For example, many birds, including nesting raptors such as red-tailed hawks and re-shouldered hawks require tall trees, and thus tree height, with taller trees being more favorable, has been included as a key model variable. Also, many songbirds, such as the northern oriole and least Bell's vireo, require relatively dense canopies, thus canopy closure, with greater closure providing greater value, is included as a model variable. Similarly, riparian water birds such as herons an egrets have specific needs relating to canopy closure, width of stand, and density of vegetative understory, so these needs have been met as much as possible with the appropriate model variables.

The single Habitat Suitability Index (HSI) value which is derived using the Riparian Forest cover-type model is therefore, not an exact measure of the habitat value of any single wildlife species. Instead, the HSI indicates the overall, broad quality of the cover-type to a broad array of the most important species which inhabit the creek's riparian zone. As such, the use of this single HSI value in the HEP process is assumed to provide the same results (i.e., estimates of relative impacts and compensation needs) as if the HEP were completed using a number of individual wildlife species models. Past comparisons using actual HSI data collected from Riparian Forest Cover along the Sacramento River suggest the validity of this assumption.

<u>AREA OF APPLICABILITY</u>: Riparian Forest Cover along Llagas Creek, a tributary of the Pajaro River.

VARIABLE

- V_1 Average tree height.
- V_2 Average canopy width of the stand.
- V_3 Tree canopy closure.
- V_4 Number of tree or shrub species.
- V_5 Understory vegetative density.

 V_1 – Average tree height. Suitability Index (SI) determination. Assumptions: For most wildlife species of concern, the taller the trees, the better the habitat value. Nesting raptors in particular require relatively tall trees. A tree height, on average, of about 60 feet or greater is optimum.

V₁ – Average Tree Height (Ft.)

V₂ – Average canopy width of the stand. Suitability Index (SI) determination. Assumptions: Generally, the wider the stand, the better the values for most key fish and wildlife. Stands less than 30-feet-wide have relatively low values; stands over 70 feet in width are best.

V₂ - Average Canopy Width of the Stand (Ft.)

V₃ – Tree canopy closure. Suitability Index (SI) determination. Assumptions: In general, the greater the forest density, as determined by percent of canopy closure, the greater the values of the forest. However, if the stand becomes too dense, habitat values frequently decline. The optimal condition is with percent canopy closure of 50 to 80 percent.

 V_3 – Tree canopy closure (%)

 V₄ - Number of tree or shrub species. Suitability Index (SI) determination. Assumptions: Habitat diversity improves carrying capacity. Generally, the more tree or shrub species present, the more diverse th forest, and the greater the values to fish and wildlife. The optimal condition is when the forest is composed of at least four species of trees.

 $V_4 -$ Number of Tree or Shrub Species

V₅ – Understory vegetative density. Suitability Index (SI) determination. Assumptions: The best Riparian Forest habitat occurs when both overstory and understory canopies are relatively dense. the understory should generally have a moderate density of vegetation at various elevations. By estimating the understory of the forest for the horizontal planes at 2, 6, and 14 feet above ground, and then averaging these three figures (i.e., the three estimates of percent vegetative cover), a good index of overall understory density can be derived.

V₅ - Average Understory Vegetative Density (%) (At 2. 6. and 14 Feet Above Ground)

<u>HABITAT SUITABILITY INDEX (HSI)</u>: Average canopy width and understory density are believed to be slightly more important variables than the other three variables. The five variables are thus combined as follows:

HSI =
$$(V_1 \times V_3 \times V_4)^{1/3} + (V_2 \times V_5)^{1/3}$$

2

Variables are generally measured or estimated during periods of maximum vegetative leaf-out.

The calculated HSI is reduced by 40% when the majority of the tree canopy closure is from nonnative species such as eucalyptus. In addition, this adjusted (or if not adjusted) HSI is further reduced by 33% if the edge of the riparian forest occurrence begins 20 feet or more away from the edge of the streambed, since riparian forest in close association with the stream has highest values. FWS/OBS-82/10.38 APRIL 1983

HABITAT SUITABILITY INDEX MODELS: DOWNY WOODPECKER

Fish and Wildlife Service U.S. Department of the Interior

This model is designed to be used by the Division of Ecological Services in conjunction with the Habitat Evaluation Procedures.

HABITAT SUITABILITY INDEX MODELS: DOWNY WOODPECKER

by

Richard L. Schroeder 107 N. Hollywood Fort Collins, CO 80521

Project Officer

R. Charles Solomon Western Energy and Land Use Team Drake Creekside Building One U.S. Fish and Wildlife Service 2627 Redwing Road Fort Collins, CO 80526

Western Energy and Land Use Team Division of Biological Services Research and Development Fish and Wildlife Service U.S. Department of the Interior

Washington, DC 20240

This report should be cited as:

Schroeder, R. L. 1982. Habitat suitability index models: Downy woodpecker. U.S. Dept. Int., Fish Wildl. Serv. FWS/OBS-82/10.38. 10 pp.

PREFACE

This document is part of the Habitat Suitability Index (HSI) Model Series (FWS/OBS-82/10), which provides habitat information useful for impact assessment and habitat management. Several types of habitat information are provided. The Habitat Use Information Section is largely constrained to those data that can be used to derive quantitative relationships between key environmental variables and habitat suitability. The habitat use information provides the foundation for HSI models that follow. In addition, this same information may be useful in the development of other models more appropriate to specific assessment or evaluation needs.

The HSI Model Section documents a habitat model and information pertinent to its application. The model synthesizes the habitat use information into a framework appropriate for field application and is scaled to produce an index value between 0.0 (unsuitable habitat) and 1.0 (optimum habitat). The application information includes descriptions of the geographic ranges and seasonal application of the model, its current verification status, and a listing of model variables with recommended measurement techniques for each variable.

In essence, the model presented herein is a hypothesis of species-habitat relationships and not a statement of proven cause and effect relationships. Results of model performance tests, when available, are referenced. However, models that have demonstrated reliability in specific situations may prove unreliable in others. For this reason, feedback is encouraged from users of this model concerning improvements and other suggestions that may increase the utility and effectiveness of this habitat-based approach to fish and wildlife planning. Please send suggestions to:

Habitat Evaluation Procedures Group Western Energy and Land Use Team U.S. Fish and Wildlife Service 2627 Redwing Road Ft. Collins, CO 80526

iii

CONTENTS

 \checkmark \checkmark

	Page
PREFACE	iii
	v
HABITAT USE INFORMATION	1 1
Food	1
Cover	2
Reproduction	2
Special Considerations	3
HABITAT SUITABILITY INDEX (HSI) MODEL	3 4
Model Applicability	4
Model Relationships	45
Application of the Model	7
Sources of other models	8
REFERENCES	8

iv

B-44

ACKNOWLEDGMENTS

We gratefully acknowledge Richard Conner and Lawrence Kilham for their review of this habitat model. Funds for the development of this model were provided by the U.S. Fish and Wildlife Service Regional Office in Portland. Publication costs of this model were partially paid for by the U.S. Army Corps of Engineers. The cover of this document was illustrated by Jennifer Shoemaker. Word processing was provided by Carolyn Gulzow and Dora Ibarra.

B-45

•)

DOWNY WOODPECKER (Picoides pubescens)

HABITAT USE INFORMATION

General

Downy woodpeckers (<u>Picoides pubescens</u>) inhabit nearly all of North America where trees are found (Bent 1939). They are rare or absent in arid desert habitats and most common in open woodlands.

Food

The downy woodpecker is primarily an insectivore; 76% of the diet is animal foods, and the remainder is vegetable food (Beal 1911). Beetles, ants, and caterpillars are the major animal foods, and vegetable foods include fruits, seeds, and mast. Downy woodpeckers feed by digging into the bark with the bill, by gleaning along the bark surface, and, infrequently, by flycatching (Jackson 1970).

Downy woodpeckers in Illinois foraged more in the lower height zones of trees than. in the tree canopies and foraged more often on live limbs than on dead limbs (Williams 1975). Similarly, downy woodpeckers in Virginia foraged primarily on live wood in pole age and mature forests (Conner 1980). Downy woodpeckers in New York spent 60% of their foraging time in elms (Ulmus spp.) (Kisiel 1972). They foraged most frequently on twigs 2.5 cm (1 inch) or less in diameter, and drilling was the foraging technique used most often. Downy woodpeckers are not strong excavators and do not excavate deeply to reach concentrated food sources, such as carpenter ants (Camponotus spp.) (Conner 1981).

Downy woodpeckers in Virginia foraged in the breeding season in habitats with a mean basal area of $11.3 \text{ m}^2/\text{ha}$ (49.2 ft²/acre). Habitats used for foraging during the postbreeding and winter seasons had significantly higher mean basal areas of $21.4 \text{ m}^2/\text{ha}$ (93.2 ft²/acre) and $17.2 \text{ m}^2/\text{ha}$ (74.9 ft²/acre), respectively. Downy woodpeckers in New Hampshire fed heavily in stands of paper birch (Betula papyrifera) that were infected with a coccid (Xylococchus betulae) (Kilham 1970). The most attractive birches for foraging were those that were crooked or leaning, contained broken branches in their crown, and had defects, such as cankers, old wounds, broken branch stubs, and sapsucker drill holes. Downy woodpeckers invaded an area in Colorado in high numbers during the winter months in response to a severe outbreak of the pine bark beetle (Dendroctonus ponderosae) (Crockett and Hansley 1978). This outbreak of beetles had not resulted in increased breeding densities of the woodpeckers at the time of the study.

1

Downy woodpeckers foraged more on tree surfaces during summer than in winter (Conner 1979). They increased the amount of time spent in subcambial excavation in winter months, probably in response to the seasonal availability and location of insect prey. Downy woodpeckers appear to broaden all aspects of their foraging behavior in the winter in order to find adequate amounts of food (Conner 1981).

Downy woodpeckers in Ontario extracted gall fly (<u>Eurosta solidaginis</u>) larvae from goldenrod (<u>Solidago canadensis</u>) galls growing near forest edges (Schlichter 1978). Corn stubble fields supported small winter populations of downy woodpeckers in Illinois (Graber et al. 1977).

Water

Information on the water requirements of the downy woodpecker was not located in the literature.

Cover

The cover requirements of the downy woodpecker are similar to their reproductive requirements, which are discussed in the following section.

Reproduction

The downy woodpecker is a primary cavity nester that prefers soft snags for nest sites (Evans and Conner 1979). These woodpeckers nest in both coniferous and deciduous forest stands in the Northwest. Nests in Virginia were common in both edge situations and in dense forests far from openings (Conner and Adkisson 1977). Downy woodpeckers in Oregon occur primarily in deciduous stands of aspen (<u>Populus tremuloides</u>) or riparian cottonwood (<u>Populus spp.</u>) (Thomas et al. 1979). The highest nesting and winter densities in Illinois were in virgin or old lowland forests (Graber et al. 1977).

Downy woodpeckers in Virginia preferred to nest in areas with high stem density, but with lower basal area and lower canopy heights than areas used by the other woodpeckers studied (Conner and Adkisson 1977). They preferred sparsely stocked forests commonly found along ridges (Conner et al. 1975). Preferred nest stands had an average basal area of 10.1 m^2 /ha (44 ft²/acre), 361.8 stems greater than 4 cm (1.6 inches) diameter/ha (894/acre), and canopy heights of 16.3 m (53.5 ft) (Conner and Adkisson 1976). Downy woodpeckers in Tennessee were frequently seen feeding in the understory and apparently selected habitats with an abundance of understory vegetation (Anderson and Shugart 1974).

Downy woodpeckers excavate their own cavity in a branch or stub 2.4 to 15.3 m (8 to 50 ft) above ground, generally in dead or dying wood (Bent 1939). There was a positive correlation between downy woodpecker densities and the number of dead trees in Illinois (Graber et al. 1977). Downy woodpeckers rarely excavate in oaks (<u>Quercus</u> spp.) or hickories (<u>Carya</u> spp.) with living cambium present at the nest site (Conner 1978). They apparently require both sap rot, to soften the outer part of trees, and heart rot, to soften the

2
interior, when hardwoods, and possibly pines, are used for nesting. Downy woodpeckers in Virginia nested mainly in dead snags with advanced stages of fungal heart rot (Conner and Adkisson 1976).

Downy woodpeckers "search image" of an optimal nest site is a live tree with a broken off dead top (Kilham 1974). Suitable nest trees are in short supply in most areas and appear to be a limiting factor in New Hampshire. Downies in Montana appeared to prefer small trees, possibly to avoid the difficulty of excavating through the thick sapwood of large trees (McClelland et al. 1979). The average dbh of nest trees (n = 3) in Montana was 25 cm (10 inches). All 11 nests in an Ontario study were in dead aspen, and the average dbh of four of these nest trees was 26.2 cm (10.3 inches) (Lawrence 1966). Fourteen of 19 nest trees in Virginia were dead, the average dbh of nest trees was 31.8 cm (12.4 inches), and nest trees averaged 8.3 m (27.2 ft)in height (Conner et al. 1975).

Thomas et al. (1979) estimated that downy woodpeckers in Oregon require 7.4 snags, 15.2 cm (6 inches) or more dbh, per ha (3 snags/acre). This estimate is based on a territory size of 4 ha (10 acres), a need for two cavities per year per pair, and the presence of 1 useable snag with a cavity for each 16 snags without a cavity. Evans and Conner (1979) estimated that downies in the Northeast require 9.9 snags, 15 to 25 cm (6 to 10 inches) dbh, per ha (4 snags/acre). Their estimate is based on a territory size of 4 ha (10 acres), a need for four cavity trees per year per pair, and a need for 10 snags for each cavity tree used in order to account for unuseable snags, a reserve of snags, feeding habitat, and a supply of snags for secondary users. Conner (pers. comm.) recommended 12.4 snags/ha (5 snags/acre) for optimal downy woodpecker habitat.

Interspersion

Downy woodpeckers occupy different size territories at different times of the year (Kilham 1974). Fall and winter territories consist of small, defined areas with favorable food supplies and the area near roost holes. Breeding season territories consist of an area as large as 10 to 15 ha (24.7 to 37.1 acres) used to search out nest stubs, and a smaller area around the nest stub itself. Breeding territories of downies in Illinois ranged from 0.5 to 1.2 ha (1.3 to 3.1 acres) (Calef 1953 cited by Graber et al. 1977). Male and female downy woodpeckers retain about the same breeding season territory from year to year, while their larger overall range has more flexible borders (Lawrence 1966).

Downy woodpeckers occupy all portions of their North American breeding range during the winter (Plaza 1978). There is, however, a slight, local southward migration in many areas.

Special Considerations

Conner and Crawford (1974) reported that logging debris in regenerating stands (1-year old) following clear cutting were heavily used by downy woodpeckers as foraging substrate. Timber harvest operations that leave snags and

trees with heart rot standing during regeneration cuts and subsequent thinnings will help maintain maximum densities of downy woodpeckers (Conner et al. 1975). Foraging habitat for the downy woodpecker in Virginia would probably be provided by timber rotations of 60 to 80 years (Conner 1980).

HABITAT SUITABILITY INDEX (HSI) MODEL

Model Applicability

<u>Geographic area</u>. This model was developed for the entire range of the downy woodpecker.

Season. This model was developed to evaluate the year-round habitat needs of the downy woodpecker.

<u>Cover types</u>. This model was developed to evaluate habitat in Deciduous Forest (DF), Evergreen Forest (EF), Deciduous Forested Wetland (DFW), and Evergreen Forested Wetland (EFW) areas (terminology follows that of U.S. Fish and Wildlife Service 1981).

Minimum habitat area. Minimum habitat area is defined as the minimum amount of contiguous habitat that is required before a species will live and reproduce in an area. Specific information on minimum habitat areas for downy woodpeckers was not found in the literature. However, based on reported territory and range sizes, it is assumed that a minimum of 4 ha (10 acres) of potentially useable habitat must exist or the HSI will equal zero.

<u>Verification level</u>. Previous drafts of this model were reviewed by Richard Conner and Lawrence Kilham and their comments were incorporated into the current draft (Conner, pers. comm.; Kilham, pers. comm.).

Model Description

<u>Overview</u>. This model considers the ability of the habitat to meet the food and reproductive needs of the downy woodpecker as an indication of overall habitat suitability. Cover needs are assumed to be met by food and reproductive requirements and water is assumed not to be limiting. The food component of this model assesses food quality through measurements of vegetative conditions. The reproductive component of this model assesses the abundance of suitable snags. The relationship between habitat variables, life requisites, cover types, and the HSI for the downy woodpecker is illustrated in Figure 1.

11

Figure 1. Relationships of habitat variables, life requisites, and cover types in the downy woodpecker model.

The following sections provide a written documentation of the logic and assumptions used to interpret the habitat information for the downy woodpecker in order to explain the variables and equations that are used in the HSI model. Specifically, these sections cover the following: (1) identification of variables used in the model; (2) definition and justification of the suitability levels of each variable; and (3) description of the assumed relation-ship between variables.

<u>Food component</u>. Food for the downy woodpecker consists of insects found on trees in forested habitats. Downy woodpeckers occupy a wide variety of forested habitats from virgin bottomlands to sparsely stocked stands along ridges. The highest downy woodpecker densities were most often reported in the more open stands with lower basal areas, but it is assumed that all forested habitats have some food value for downies. Optimal conditions are assumed to occur in stands with basal areas between 10 and 20 m²/ha (43.6 and 87.2 ft²/acre), and suitabilities will decrease to zero as basal area approaches zero. Stands with basal areas greater than 30 m²/ha (130.8 ft²/ acre) are assumed to have moderate value for downy woodpeckers.

<u>Reproduction component</u>. Downy woodpeckers nest in cavities in either totally or partially dead small trees. They require snags greater than 15 cm (6 inches) dbh for nest sites. Optimal habitats are assumed to contain 5 or more snags greater than 15 cm dbh/0.4 ha (6 inches dbh/1.0 acre), and habitats without such snags have no suitability.

Model Relationships

<u>Suitability Index (SI) graphs for habitat variables</u>. This section contains suitability index graphs that illustrate the habitat relationships described in the previous section.

5

B-50

Life requisite values. The life requisite values for the downy woodpecker are presented below.

6

V

Life requisite	Cover type	<u>Life requisite value</u>
Food	EF,DF,EFW,DFW	Vı
Reproduction	EF,DF,EFW,DFW	V ₂

HSI determination. The HSI for the downy woodpecker is equal to the lowest life requisite value.

١.

Application of the Model

7

Definitions of variables and suggested field measurement techniques (Hays et al. 1981) are provided in Figure 2.

Variable (definition)		Cover types	 Suggested technique
Vı	Basal area [the area of exposed stems of woody vegetation if cut horizontally at 1.4 m (4.5 ft) height, in m²/ha (ft²/acre)].	EF,DF,EFW,DFW	Bitterlich method
V ₂	Number of snags > 15 cm (6 inches) dbh/0.4 ha (1.0 acre) [the number of standing dead trees or partly dead trees, greater than 15 cm (6 inches) diameter at breast height (1.4 m/4.5 ft), that are at least 1.8 m (6 ft) tall. Trees in which at least 50% of the branches have fallen, or are pre- sent but no longer bear foliage, are to be con- sidered snags].	EF,DF,EFW,DFW	Quadrat

Figure 2. Definitions of variables and suggested measurement techniques.

SOURCES OF OTHER MODELS

Conner and Adkisson (1976) have developed a discriminant function model for the downy woodpecker that can be used to separate habitats that possibly provide nesting habitat from those that do not provide nesting habitat. The model assesses basal area, number of stems, and canopy height of trees.

REFERENCES

- Anderson, S. H., and H. H. Shugart, Jr. 1974. Habitat selection of breeding birds in an East Tennessee deciduous forest. Ecology 55:828-837.
- Beal, F. 1911. Food of the woodpeckers of the United States. U.S. Dept. Agric., Biol. Surv. Bull. 37:1-64.
- Bent, A. C. 1939. Life histories of North American woodpeckers. U.S. Natl. Mus. Bull. 174. 334 pp.
- Calef, R. T. 1953. Ecological analysis of the flora and vertebrate fauna of Funks Forest Natural Area, McClean County, Illinois. M.S. Thesis, Univ. Ill., Urbana. 85 pp. Cited by Graber et al. 1977.
- Conner, R. N. 1978. Snag management for cavity nesting birds. Pages 120-128 in R. M. DeGraaf, tech. coord. Management of southern forests for nongame birds. U.S. Dept. Agric., For. Serv. Gen. Tech. Rep. SE-14. 176 pp.
 - ______. 1979. Seasonal changes in woodpecker foraging methods: Strategies for winter survival. Pages 95-105 <u>in</u> J. G. Dickson, R. N. Conner, R. R. Fleet, J. C. Kroll, and J. A. Jackson, eds. The role of insectivorous birds in forest ecosystems. Academic Press, NY. 381 pp.

______. 1980. Foraging habitats of woodpeckers in southwestern Virginia. J. Field Ornithol. 51(2):119-127.

. 1981. Seasonal changes in woodpecker foraging patterns. Auk 98(3):562-570.

_______. Personal communication (letter dated 10 November, 1982). U.S. Dept. Agric., For. Serv., Southern For. Exp. Stn., Nacogdoches, TX.

- Conner, R. N., and C. S. Adkisson. 1976. Discriminant function analysis: A possible aid in determining the impact of forest management on woodpecker nesting habitat. For. Sci. 22(2):122-127.
- ______. 1977. Principal component analysis of woodpecker nesting habitat. Wilson Bull. 89(1):122-129.
- Conner, R. N., and H. S. Crawford. 1974. Woodpecker foraging in Appalachian clearcuts. J. For. 72(9):564-566.

Conner, R. N., R. G. Hooper, H. S. Crawford, and H. S. Mosby. 1975. Woodpecker nesting habitat in cut and uncut woodlands in Virginia. J. Wildl. Manage. 39(1):144-150. 13

- Crockett, A. B., and P. L. Hansley. 1978. Apparent response of <u>Picoides</u> woodpeckers to outbreaks of pine bark beetle. Western Birds 9(2):67-70.
- Evans, K. E., and R. N. Conner. 1979. Snag management. Pages 215-225 in R. M. DeGraaf, tech. coord. Management of north central and northeastern forests for nongame birds. U.S. Dept. Agric., For. Serv. Gen. Tech. Rep. NC-51. 268 pp.
- Graber, J. W., R. R. Graber, and E. L. Kirk. 1977. Illinois birds: Picidae. Ill. Nat. Hist. Surv. Biol. Notes 102:15-21.
- Hays, R. L., C. S. Summers, and W. Seitz. 1981. Estimating wildlife habitat variables. U.S. Dept. Int., Fish Wildl. Serv. FWS/OBS-81/47. 111 pp.
- Jackson, J. A. 1970. Quantitative study of the foraging ecology of downy woodpeckers. Ecology 51:318-323.
- Kilham, L. 1970. Feeding behavior of downy woodpeckers. I. Preference for paper birch and sexual differences. Auk 87:544-556.
- ______. 1974. Early breeding season behavior of downy woodpeckers. Wilson Bull. 86(4):407-418.

______. Personal communication (letter dated 18 October, 1982). Box 37, Lyme, New Hampshire.

- Kisiel, D. S. 1972. Foraging behavior of <u>Dendrocopos</u> villosus and <u>D.</u> <u>pubescens</u> in eastern New York State. Condor 74(4):393-398.
- Lawrence, L. D. 1966. A comparative life-history of four species of woodpeckers. Ornithol. Monogr. 5:1-156.
- McClelland, B. R., S. S. Frissell, W. C. Fischer, and C. H. Halvorson. 1979. Habitat management for hole-nesting birds in forests of western larch and Douglas-fir. J. For. 77(8):480-483.
- Plaza, P. D. 1978. Distribution of selected North American Picids determined by computer mapping. Am. Birds 32(4):912-922.
- Schlichter, L. 1978. Winter predation by black-capped chickadees and downy woodpeckers on inhabitants of the goldenrod ball gall. Can. Field-Nat. 92(1):71-74.
- Thomas, J. W., R. G. Anderson, C. Maser, and E. L. Bull. 1979. Snags. Pages 60-77 in J. W. Thomas, ed. Wildlife habitat in managed forests--the Blue Mountains of Oregon and Washington. U.S. Dept. Agric., For. Serv. Agric. Handb. 553. 512 pp.

U.S. Fish and Wildlife Service. 1981. Standards for the development of habitat suitability index models. 103 ESM. U.S. Dept. Int., Fish Wildl. Serv., Div. Ecol. Serv. n.p.

Ľ

V,

÷.

Williams, J. B. 1975. Habitat utilization by four species of woodpeckers in a central Illinois woodland. Am. Midl. Nat. 93:354-367.

 4. Title and Subtitle Habitat Suitability Index Models: Downy Woodpe 7. Author(s) Richard L. Schroeder 9. Performing Organization Name and Address Habitat Evaluation Provide Strenge Str	cker rocedures Group and Use Team fe Service ding One 526 and Use Team al Services hent rvice	 S. Report Date April 1983 6. 8. Performing Organization Rept. No. 10. Project/Task/Work Unit No. 11. Contract(C) or Grant(G) No. (C) (G) 13. Type of Report & Period Covered 14.
Habitat Suitability Index Models: Downy Woodpe 7. Author(s) Richard L. Schroeder 9. Performing Organization Name and Address Habitat Evaluation Pi Western Energy and La U.S. Fish and Wildli Drake Creekside Build 2627 Redwing Road Fort Collins, CO 804 12. Sponsoring Organization Name and Address Western Energy and La Division of Biologica Research and Developm Fish and Wildlife Ser Washington, DC 2024C 5. Supplementary Notes	cker rocedures Group and Use Team fe Service ding One 526 and Use Team al Services ment rvice	5. Report Date April 1983 6. 8. Performing Organization Rept. No. 10. Project/Task/Work Unit No. 11. Contract(C) or Grant(G) No. (C) (G) 13. Type of Report & Period Covered 14.
 7. Author(s) Richard L. Schroeder 9. Performing Organization Name and Address Habitat Evaluation Pi Western Energy and La U.S. Fish and Wildli Drake Creekside Build 2627 Redwing Road Fort Collins, CO 809 12. Sponsoring Organization Name and Address Western Energy and La Division of Biologica Research and Developm Fish and Wildlife Ser Washington, DC 2024C 5. Supplementary Notes 	rocedures Group and Use Team fe Service ding One 526 and Use Team al Services ment rvice	 6. 8. Performing Organization Rept. No. 10. Project/Task/Work Unit No. 11. Contract(C) or Grant(G) No. (C) (G) 13. Type of Report & Period Covered 14.
 Author(s) Richard L. Schroeder Performing Organization Name and Address Habitat Evaluation P Western Energy and Li U.S. Fish and Wildli Drake Creekside Build 2627 Redwing Road Fort Collins, CO 80! I2 Sponsoring Organization Name and Address Western Energy and La Division of Biologica Research and Developm Fish and Wildlife Ser Washington, DC 2024C Supplementary Notes 	rocedures Group and Use Team fe Service ding One 526 and Use Team al Services ment vice	 8. Performing Organization Rept. No. 10. Project/Task/Work Unit No. 11. Contract(C) or Grant(G) No. (C) (G) 13. Type of Report & Period Covered 14.
 Performing Organization Name and Address Habitat Evaluation P Western Energy and Li U.S. Fish and Wildli Drake Creekside Build 2627 Redwing Road Fort Collins, CO 80! Sponsoring Organization Name and Address Western Energy and La Division of Biologica Research and Developm Fish and Wildlife Ser Washington, DC 2024C Supplementary Notes 	rocedures Group and Use Team fe Service ding One 526 and Use Team al Services ment rvice	 10. Project/Task/Work Unit No. 11. Contract(C) or Grant(G) No. (C) (G) 13. Type of Report & Period Covered 14.
U.S. Fish and Wildli Drake Creekside Build 2627 Redwing Road Fort Collins, CO 809 2. Sponsoring Organization Name and Address Western Energy and La Division of Biologica Research and Developm Fish and Wildlife Ser Washington, DC 2024C 5. Supplementary Notes	fe Service ding One 526 and Use Team al Services hent vice	11. Contract(C) or Grant(G) No. (C) (G) 13. Type of Report & Period Covered 14.
Drake Creekside Build 2627 Redwing Road Fort Collins, CO 80 2. Sponsoring Organization Name and Address Western Energy and La Division of Biologica Research and Developn Fish and Wildlife Ser Washington, DC 2024C 5. Supplementary Notes	ding One 526 and Use Team al Services bent vice	(C) (G) 13. Type of Report & Period Covered 14.
2627 Redwing Road Fort Collins, CO 80! 2 Sponsoring Organization Name and Address Western Energy and La Division of Biologica Research and Developm Fish and Wildlife Ser Washington, DC 2024C 5. Supplementary Notes	526 and Use Team al Services hent vice	(G) 13. Type of Report & Period Covered 14.
 2. Sponsoring Organization Name and Address Western Energy and La Division of Biologica Research and Developm Fish and Wildlife Ser Washington, DC 2024(5. Supplementary Notes 	and Use Team Il Services Nent Vice	13. Type of Report & Period Covered
5. Abstract (Limit: 200 words)	al Services nent vice	14.
Research and Developr Fish and Wildlife Ser Washington, DC 2024(5. Abstract (Limit: 200 words)	nent vice	14.
Fish and Wildlife Ser Washington, DC 2024(5. Supplementary Notes 5. Abstract (Limit: 200 words)	vice	14.
5. Supplementary Notes 6. Abstract (Limit: 200 words))	
S. Abstract (Limit: 200 words)		
Mathematical models, Wildlife, Birds, Habitabil	itv	
5. Identifiers/Open-Ended Terms		
Downy woodpecker		
<u>Picoides</u> Habitat Suitability Indexes (HSI)		
. COSATI Field/Group		
vailability Statement	19. Security Class (This I	Report) 21 No4 De
elease Unlimited	UNCLASSIFIED	10 In 190. or Pages
	20. UNCLASSIFIED	age) 22. Price
NSI-Z39.18) See Instructions on Rev	erse	OPTIONAL SOBM COD

REGION 1

Regional Director U.S. Fish and Wildlife Service Lloyd Five Hundred Building, Suite 1692 500 N.E. Multnomah Street Portland, Oregon 97232

REGION 4

Regional Director U.S. Fish and Wildlife Service Richard B. Russell Building 75 Spring Street, S.W. Atlanta, Georgia 30303

REGION 2

Regional Director U.S. Fish and Wildlife Service P.O. Box 1306 Albuquerque, New Mexico 87103

REGION 3

Regional Director U.S. Fish and Wildlife Service Federal Building, Fort Snelling Twin Cities, Minnesota 55111

REGION 5

Regional Director U.S. Fish and Wildlife Service One Gateway Center Newton Corner, Massachusetts 02158

REGION 7

Regional Director U.S. Fish and Wildlife Service 1011 E. Tudor Road Anchorage, Alaska 99503

REGION 6

Regional Director U.S. Fish and Wildlife Service P.O. Box 25486 Denver Federal Center Denver, Colorado 80225

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration. BIOLOGICAL REPORT 82(10.146) SEPTEMBER 1987

4

HABITAT SUITABILITY INDEX MODELS: HAIRY WOODPECKER

Fish and Wildlife Service

U.S. Department of the Interior

MODEL EVALUATION FORM

Habitat models are designed for a wide variety of planning applications where habitat information is an important consideration in the decision process. However, it is impossible to develop a model that performs equally well in all situations. Assistance from users and researchers is an important part of the model improvement process. Each model is published individually to facilitate updating and reprinting as new information becomes available. User feedback on model performance will assist in improving habitat models for future applications. Please complete this form following application or review of the model. Feel free to include additional information that may be of use to either a model developer or model user. We also would appreciate information on model testing, modification, and application, as well as copies of modified models or test results. Please return this form to:

> Habitat Evaluation Procedures Group U.S. Fish and Wildlife Service 2627 Redwing Road, Creekside One Fort Collins, CO 80526-2899

Thank you for your assistance.

Species	Geographic Location
Habitat	or Cover Type(s)
Type of Baselin	Application: Impact Analysis Management Action Analysis e Other
Variabl 	es Measured or Evaluated
Was the	species information useful and accurate? Yes No
If not,	what corrections or improvements are needed?

Were the variables and curves clearly defined and useful? Yes No
If not, how were or could they be improved?
Were the techniques suggested for collection of field data: Appropriate? Yes No Clearly defined? Yes No Easily applied? Yes No
If not, what other data collection techniques are needed?
Were the model equations logical? Yes No Appropriate? Yes No
How were or could they be improved?
Other suggestions for modification or improvement (attach curves, equations, graphs, or other appropriate information)
Additional references or information that should be included in the model:
Model Evaluator or ReviewerDate
Agency
Address
Telephone Number Comm:FTS

.

Biological Report 82(10.146) September 1987

HABITAT SUITABILITY INDEX MODELS: HAIRY WOODPECKER

by

Patrick J. Sousa U.S. Fish and Wildlife Service National Ecology Center Creekside One Building 2627 Redwing Road Fort Collins, CO 80526-2899

U.S. Department of the Interior Fish and Wildlife Service Research and Development Washington, DC 20240

Suggested citation:

Sousa, P.J. 1987. Habitat suitability index models: hairy woodpecker. U.S. Fish Wildl. Serv. Biol. Rep. 82(10.146). 19 pp.

PREFACE

This document is part of the Habitat Suitability Index (HSI) model series .[Biological Report 82(10)], which provides habitat information useful for impact assessment and habitat management. Several types of habitat information are provided. The Habitat Use Information section is largely constrained to those data that can be used to derive quantitative relationships between key environmental variables and habitat suitability. This information provides the foundation for the HSI model and may be useful in the development of other models more appropriate to specific assessment or evaluation needs.

The HSI Model section documents the habitat model and includes information pertinent to its application. The model synthesizes the habitat use information into a framework appropriate for field application and is scaled to produce an index value between 0.0 (unsuitable habitat) and 1.0 (optimum habitat). The HSI Model section includes information about the geographic range and seasonal application of the model, its current verification status, and a list of the model variables with recommended measurement techniques for each variable.

The model is a formalized synthesis of biological and habitat information published in the scientific literature and may include unpublished information reflecting the opinions of identified experts. Habitat information about wildlife species frequently is represented by scattered data sets collected during different seasons and years and from different sites throughout the range of a species. The model presents this broad data base in a formal, logical, and simplified manner. The assumptions necessary for organizing and synthesizing the species-habitat information into the model are discussed. The model should be regarded as a hypothesis of species-habitat relationships and not as a statement of proven cause and effect relationships. The model may have merit in planning wildlife habitat research studies about a species, as well as in providing an estimate of the relative suitability of habitat for User feedback concerning model improvements and other suggesthat species. tions that may increase the utility and effectiveness of this habitat-based approach to fish and wildlife planning are encouraged. Please send suggestions to:

Resource Evaluation and Modeling Section U.S. Fish and Wildlife Service National Ecology Center 2627 Redwing Road Ft. Collins, CO 80526-2899

CONTENTS

	Page
PREFACE	iii vi
HABITAT USE INFORMATION General Food Water Cover Reproduction Interspersion and Composition Special Considerations HABITAT SUITABILITY INDEX (HSI) MODEL Model Applicability Model Description Application of the Model SOURCES OF OTHER MODELS	1 1 2 2 5 6 6 6 7 12 15
REFERENCES	15

ACKNOWLEDGMENTS

A field validation of an earlier version of the HSI model for the hairy woodpecker was conducted under the direction of Ms. L. Jean O'Neil, U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS. The field validation was based on habitat evaluation by the following individuals:

Dr. F.J. Alsop, III, East Tennessee State University, Johnson City
Dr. C.E. Bock, University of Colorado, Boulder
Dr. R.N. Conner, U.S. Forest Service, Nacogdoches, TX
Dr. J.A. Jackson, Box Z, Mississippi State, MS
Dr. F.C. James, Florida State University, Tallahassee

Dr. B.J. Schardien Jackson, Mississippi State, MS

Mr. J. Teaford and Dr. T. Roberts, Waterways Experiment Station, and Dr. J. Wakeley, Pennsylvania State University, assisted in the study design, data collection, data analysis, and model modification. The field validation resulted in several improvements in the model. The efforts of all of those involved in the field validation are very much appreciated.

Earlier drafts of the model were reviewed by Dr. R.N. Conner and Dr. C.E. Bock. Their review comments led to significant improvements in the model and are appreciated.

Word processing of this document was provided by C. Gulzow, D. Ibarra, P. Gillis, and E. Barstow. The cover was illustrated by J. Shoemaker.

HAIRY WOODPECKER (Picoides villosus)

HABITAT USE INFORMATION

General

The hairy woodpecker (<u>Picoides villosus</u>) breeds and winters throughout most of North America (American Ornithologists' Union 1983). The species is a primary cavity nester in "deciduous or coniferous forest, well-wooded towns and parks, and open situations with scattered trees ..." (American Ornithologists' Union 1983:391).

Food

Animal matter, such as beetle larvae (Coleoptera), ants (Hymenoptera), caterpillars (Lepidoptera), and adult beetles, accounted for 78% of the hairy woodpecker's annual diet, based on 382 stomachs collected throughout North America (Beal 1911). The diet is supplemented by fruit and mast (Beal 1911; Hardin and Evans 1977). Hairy woodpeckers forage extensively for seeds in winter (Jackman 1975); in Colorado, they foraged extensively during the non-reproductive season on the seeds of ponderosa pine (Pinus ponderosa) (Stallcup 1966). Hairy woodpeckers may concentrate in areas of insect outbreaks in response to the increased food source (Koplin 1967; Massey and Wygant 1973). The hairy woodpecker was considered to be a primary predator of the Southern pine beetle (Dendroctonus frontalis) in east Texas (Kroll and Fleet 1979).

Hairy woodpeckers are considered opportunistic foragers (Raphael and White 1984); they forage on a variety of substrates, including tree trunks, stumps, exposed roots (Lawrence 1966), snags, downed logs, the ground (Mannan et al. 1980), and logging debris in recent clearcuts (Conner and Crawford 1974). In California, hairy woodpeckers foraged on snags 51% of the time and on live trees 47% of the time (Raphael and White 1984). During winter, hairy woodpeckers in Virginia foraged most often on dead trees or dead parts of live trees (Conner 1980). Hairy woodpeckers in New York exhibited a sexual difference in the selection of winter foraging sites; males foraged on dead trees significantly more often than females, and females foraged significantly more often on live trees (Kisiel 1972). Both sexes used a variety of tree species for foraging sites. A variety of tree species was also used for foraging by hairy woodpeckers in Sierra Nevada forests (Raphael and White 1984). Snags used for foraging in Douglas-fir (<u>Pseudotsuga menziesii</u>) forests in Oregon averaged 61 cm dbh and ranged from 13 to 173 cm dbh (Mannan 1977). The average foraging height of hairy woodpeckers in Iowa was 8.8 ± 1.55 m, and the average diameter of limbs used for foraging was 6.52 ± 1.04 cm (Gamboa and Brown 1976). Hairy woodpeckers in New York typically foraged on limbs 5 to 10 cm in diameter (Kisiel 1972).

Hairy woodpeckers in southwestern Virginia foraged in "... habitats with relatively dense vegetation near the ground" (Conner 1980:121) in comparison to foraging habitat selected by other species of woodpeckers, especially the downy woodpecker (P. pubescens).

Water

No specific information on water requirements of the hairy woodpecker was found in the literature.

Cover

Hairy woodpeckers inhabit a wide variety of forest cover types. For example, they inhabit Douglas-fir forests (Mannan et al. 1980), ponderosa pine forests (Diem and Zeveloff 1980), pinyon-juniper (<u>Pinus edulis - Juniperus</u> spp.) woodlands (Balda and Masters 1980), eastern deciduous forests (Conner et al. 1975), and riparian communities (Stauffer and Best 1980). Winter population densities of hairy woodpeckers in Illinois were positively correlated with the number of trees >56 cm dbh and with a diversity of genera and species of large trees (Graber et al. 1977). Hairy woodpeckers in Oregon use the shrub/sapling (8 to 15 yr) and second-growth (16 to 40 yr) stages of Douglas-fir forests, but they do not nest in these younger stages (Meslow and Wight 1975). Jackman (1975) stated that hairy woodpeckers inhabit secondgrowth, partially thinned, and other altered forest types; however, hairy woodpeckers were reported more frequently (95% of 40 breeding bird censuses) in mature undisturbed habitats in the northern hardwoods region than in disturbed and successional habitats (43% of 30 censuses) (Noon et al. 1979).

Hairy woodpeckers use tree cavities for roosting and winter cover, as well as for nesting and rearing young (Thomas et al. 1979), and they will excavate new cavities in the fall to be used for roosting (Jackman 1975).

Reproduction

The hairy woodpecker is a primary cavity nester that is able to adapt to a wide variety of habitats (Kilham 1968). In the Pacific Northwest, hairy woodpeckers require standing dead trees and live trees with rotted heartwood (Jackman 1975). Similarly, hairy woodpeckers in Virginia exhibited a definite preference for trees with heartrot (Conner et al. 1975; Conner et al. 1976). Thomas et al. (1979), however, listed the hairy woodpecker as a species that usually excavates in sound wood. Runde and Capen (1987) found that the amount of sound wood varied widely (based on a visual estimate) in live trees used for nesting by hairy woodpeckers; 11 of 21 nests were in live trees. A possible exception to the apparently general use of live or dead trees for nest sites is that hairy woodpeckers do not nest in Engelmann spruce (<u>Picea engelmannii</u>) forests in the Pacific Northwest (Jackman 1975). Haapanen (1965 cited by Smith 1980:264) found that "of all the woodpeckers found in spruce-fir forests, apparently only the Northern 3-toed Woodpecker [<u>Picoides tridactylus</u>] is capable of making holes in the dense wood of living spruce trees." R.N. Conner (U.S. Forest Service, Nacogdoches, TX; letter dated February 19, 1986) suggests, however, that Engelmann spruce and other North American spruces are relatively soft-wooded trees (compared to oaks) that can be easily excavated by some species of woodpeckers. He suggests that the lack of use may be due to the absence of heartwood decay or to resin produced by spruce rather than to the density of the spruce wood. Whatever the reason for the observed lack of use, Conner believes that insufficient data exist to categorically classify live spruces as unsuitable for excavation by hairy woodpeckers.

Preferred nesting areas of hairy woodpeckers in east Tennessee were characterized by a large number of trees >23 cm dbh and associated high canopy biomass (Anderson and Shugart 1974). Hairy woodpeckers in Virginia apparently preferred areas with high stem density, but nested in areas with a wide range of basal areas, canopy heights, stem densities, and distances from cleared areas (Conner and Adkisson 1977). In northwestern Washington, hairy woodpecker nests were found in a variety of successional stages, though most were in, or at the edge of, old-growth forests (Zarnowitz and Manuwal 1985). Hairy woodpeckers in Washington are found in open rather than dense stands of timber (Larrison and Sonnenberg 1968), and in California's Sierra Nevada they prefer forests of low to moderate canopy closure (<70%) (Verner 1980). Both understocked and fully stocked stands in Virginia were suitable nesting areas as long as decayed trees were present (Conner et al. 1975). Hairy woodpeckers have even been reported nesting in the grass-forb stage of mixed coniferous forest regeneration by using stumps <1.5 m tall (Verner 1980).

Hairy woodpeckers require trees with a minimum dbh of 25 cm and a minimum height of 4.6 m for nesting (Thomas et al. 1979). Raphael and White (1984:24) found that "...diameter was the tree characteristic most closely correlated with nesting use" for 17 cavity-nesting birds. Conner and Adkisson (1976) found that canopy height had a greater influence on distinguishing between "possible nesting habitat" and "not nesting habitat" than did either basal area or stem density. In Vermont, no significant difference in mean tree height was detected between nest trees and adjacent non-nest trees (Runde and Capen 1987). Diameter at breast height (dbh) and diameter at nest height (dnh) were significantly greater for nest trees than non-nest trees (x dbh:27.1±1.3 cm vs. 23.9±0.7 cm, P<0.05; x dnh:22.4±1.1 cm vs. 13.2±9.6 cm, P<0.01). The probable optimum diameter range for hairy woodpecker nest trees is 25 to 35 cm dbh, and the probable optimum height range for nest trees is 6 to 12 m (Evans and Conner 1979). In Douglas-fir forests, however, hairy woodpeckers nest in older second-growth ($4\overline{1}$ to 120 yr) and mature (120+ yr) forests (Meslow and Wight 1975); these age classes are presumably taller than the optimum range suggested by Evans and Conner (1979). The average height of eight trees used for nesting in a Colorado aspen forest was 18 m, and ranged from about 11 to 21.3 m (Scott et al. 1980). Ten trees used for nesting in Virginia averaged 13.0 m tall and ranged from 4 to 26.5 m (Conner et al. 1975). The diameter of the tree at the cavity level in these 10 trees averaged 25.2 cm and ranged from 20 to 46 cm. In California, 19 nest trees averaged 13.7 m tall with an average diameter at the cavity level of 36.3 ± 2.09 cm (Raphael and White 1984). Table 1 summarizes tree condition, nest heights, and nest tree diameter from several studies.

Source	Number of nests (n)	<u>Tree co</u> Dead	ndition Live	Average nest height (range)	Average nest tree dbh (range)
Lawrence (1966) (NH)	11 (n=7 for dbh)	1	10	10.5 m (4.5-14 m) 34.9 ft (15-45 ft)	28 cm (25.4-34.8 cm) 11.1 inches (10-13.7 inches)
Conner et al. (1975) (VA)	10	5	5 ^a	8.8 m (2.4-19.8 m) 28.9 ft (7.9-65 ft)	40.6 cm (20-64 cm) 16 inches (7.9-25.2 inches)
Jackman (1975) (OR)	33	?	?	7.6 m (5-10 m) 24.9 ft (16.4-32.8 ft)	?
Graber et al. (1977) (IL)	17	6	11 ^b	4.6-10.7 m 15-35 ft	?
Mannan (1977) (OR)	7	?	?	18.2 m (7.9-41.8 m) 59.4 ft (25.9-137.1 ft)	92 cm (48-172 cm) 36.2 inches (18.9-67.8 inches)
Scott et al. (1980) (CO)	8	2	6	10 m (6.7-15.2 m) 33 ft (22-50 ft)	38 cm (25.4-58.4 cm) 15 inches (10-23 inches)
Raphael and White (1984) (CA)	19	16	3C	4.9±0.69 m 16.1±2.26 ft	43.8 cm 17.2 inches
Zarnowitz and Manuwal (1985) (WA)	16	16 ^d	-	13±12 m 42.6±39.4 ft	41±13 cm 16.1±5.1 inches
Runde and Capen (1987) (VT)	21	10	11 ^e	17.5±1.2 m 57.4±3.9 ft	27.1±1.3 cm 10.7±0.5 inches

Table 1. Characteristics of nest sites selected by hairy woodpeckers in several study areas.

^aFour of the five nests in live trees were located in dead portions of the trees; the fifth was located in a totally live oak tree with a decayed heartwood (Conner, unpubl.).

 $^{\mathsf{b}}\mathsf{About}$ one-half of these nests were located in dead portions of the trees.

CLocated in dead portions of live trees.

d_{All nests} located in broken-top trees.

4

e_{All 11} cavities were drilled through live wood.

Hairy woodpeckers will excavate in both hard and soft snags (Evans and Conner 1979); however, hairy woodpecker breeding densities were significantly positively correlated (P≤0.01) with soft snags in Iowa riparian forests (Stauffer and Best 1980). The hairy woodpecker was categorized as a soft snag excavator in Sierra Nevada forests (Raphael and White 1984). Evans and Conner (1979) estimated that 200 snags were necessary in order to support the maximum population of hairy woodpeckers on 40 ha of forest. Their estimate was based on a minimum annual need of four cavities per pair, and an assumption that only 10% of the available snags would be suitable for use. Snag density requirements decreased in direct proportion to the percentage of maximum population desired; e.g., 160 snags are required to support 80% of the maximum population, and 100 snags would support 50% of the maximum population. Α similar estimate for the Blue Mountains of Oregon and Washington was that 180 snags/40 ha are necessary to support maximum populations of hairy woodpeckers (Thomas et al. 1979). Raphael and White (1984) distinguished between hard and soft snags in estimating the density of snags required to support the maximum density of hairy woodpeckers. They assumed a maximum density of 16 pairs/40 ha, an annual rate of excavation of 4 cavities/pair, and a reserve of 3 suitable cavities per pair to arrive at an estimate of 192 suitable snags/40 ha to support the maximum density. They further estimated that 4 hard snags are required to produce 1 soft snag, resulting in an estimate of 768 "hard snag equivalents" (Raphael and White 1984:56) per 40 ha. Although low numbers of snags can, in theory, support low-density woodpecker populations, enough snags to support 40% of the maximum population was assumed to be the minimum that will support a self-sustaining population of hairy woodpeckers in the Pacific Northwest (Bull 1978).

Interspersion and Composition

Territory size in a mature bottomland forest in Illinois averaged 1.1 ha and ranged from 0.6 to 1.5 ha (Calef 1953 cited by Graber et al. 1977). Reported territory size of hairy woodpeckers in the Blue Mountains of Washington and Oregon averaged 2.4 to 3.6 ha (Thomas et al. 1979). Evans and Conner (1979), however, reported an average territory size of 8 ha based on available literature, whereas territories reported for two hairy woodpeckers in Kansas were 9 and 15 ha (Fitch 1958). Home range and territory size are strongly influenced by habitat quality and, therefore, can be quite variable (Conner, unpubl.).

In a study of bird use of various sized forested habitats in New Jersey, hairy woodpeckers did not occur in areas of <2 ha (Galli et al. 1976). A minimum width of riparian forest necessary to support breeding populations of hairy woodpeckers in Iowa was 40 m (Stauffer and Best 1980). Robbins (1979) compared frequency of occurrence of hairy woodpeckers at Breeding Bird Survey stops in Maryland to the amount of contiguous forested area. The greatest decrease in frequency of occurrence was recorded at 4 ha of contiguous forested habitat, and Robbins (1979) proposed this value as a preliminary estimate of the minimum area necessary to support a viable breeding population of hairy woodpeckers. Conner (unpubl.), however, believes that 4 ha may represent the minimal area that hairy woodpeckers will use, but that such a small area could not support a viable breeding population, which he considers to be a minimum of 250 pairs. He suggested a minimum habitat area of 12 ha to support several breeding pairs of hairy woodpeckers (R.N. Conner, U.S. Forest Service, Nacogdoches, TX; letter dated December 1, 1981).

Although the hairy woodpecker is considered a resident species throughout its range, altitudinal migrations between mountainous areas and lower elevations do occur (Bailey and Niedrach 1965).

Special Considerations

The hairy woodpecker has been classed as a "tolerant species" to habitat alteration in Iowa (Stauffer and Best 1980), but also has been suggested as a sensitive environmental indicator of the ponderosa pine community (Diem and Zeveloff 1980).

HABITAT SUITABILITY INDEX (HSI) MODEL

Model Applicability

<u>Geographic area.</u> This model was developed for application within forested habitat throughout the entire range of the hairy woodpecker. Use of the model differs, however, between forests in the eastern United States and the western United States. The differences in application are described in the model.

<u>Season</u>. This model was developed to evaluate the year-round habitat of the hairy woodpecker.

<u>Cover types.</u> This model was developed to evaluate habitat in the following forested cover types: Deciduous Forest (DF), Evergreen Forest (EF), Deciduous Forested Wetland (DFW), and Evergreen Forested Wetland (EFW) (terminology follows U.S. Fish and Wildlife Service 1981).

<u>Minimum habitat area.</u> A minimum of 4 ha of forested habitat has been estimated to be necessary to support a viable breeding population of hairy woodpeckers (Robbins 1979), although Conner (unpubl.) believes that such a small area may represent the minimum needed to support one pair rather than a viable breeding population. Conner (unpubl.) suggested 12 ha as a reasonable estimate of the area needed to support several pairs of hairy woodpeckers. Additionally, forested riparian zones should be at least 40 m wide to be considered as potential breeding habitat for hairy woodpeckers (Stauffer and Best 1980).

<u>Verification level.</u> An earlier draft of the HSI model for the hairy woodpecker was used in a field evaluation of model outputs compared to expert opinion (O'Neil et al. 1988). The following species experts participated in the field evaluation: Dr. F.J. Alsop, III, East Tennessee State University, Johnson City

Dr. C.E. Bock, University of Colorado, Boulder

Dr. R.N. Conner, U.S. Forest Service, Nacogdoches, TX

Dr. J.A. Jackson, Box Z, Mississippi State, MS

Dr. F.C. James, Florida State University, Tallahassee

Dr. B.J. Schardien Jackson, Mississippi State, MS

Initial results indicated that outputs from the earlier model were poorly correlated (r=0.07, P>0.50) with habitat ratings by experts for 40 sites in eastern Tennessee (O'Neil et al. 1988). Important habitat criteria identified by the experts were used to modify the model in an attempt to more closely mimic the procedures used by experts to rate habitats. The major changes to the model as a result of the field evaluation were (1) optimum suitability for the average diameter of overstory trees was changed from 25 to 38 cm; (2) snags were assigned greater importance than live trees for nesting; (3) the variable "percent canopy cover of pines" was added to reflect a strong negative correlation (r=-0.91, P<0.001) between this variable and habitat ratings by species authorities; (4) the mathematical function used to calculate the cover suitability index was changed from a geometric mean to a multiplicative function; and (5) the suitability relationship for tree canopy closure was changed from a preference for moderate canopy closure to a preference for dense forest canopy. Correlation of outputs from the modified model to habitat ratings by species authorities improved considerably (r=0.82, P<0.001) (O'Neil et al. 1988).

All of the changes to the model as a result of the field evaluation were based on input from species experts and reflect hairy woodpecker ecology in forests in the eastern United States. The variable "percent canopy cover of pines" is not recommended as an appropriate variable in western forests; use of the model in western vs. eastern forests is described below. The current model is the direct result of the field evaluation; it has not been field tested.

Model Description

Overview. The hairy woodpecker can satisfy all of its habitat requirements within any one of the forested cover types listed above. Reproductive and cover needs are evaluated in this model. Although sufficient food is an obvious life requisite of the hairy woodpecker, I assume in this model that food will never be more limiting than cover and reproductive requirements and that water is not a limiting factor.

The following sections identify important habitat variables, describe suitability levels of the variables, and describe the relationships between variables.

<u>Reproduction component.</u> The hairy woodpecker is able to adapt to a variety of habitats, but suitable reproductive habitats must (1) be dominated by trees of sufficient size and decay for nesting, (2) have adequate snag densities, or (3) have some combination of the two.

The number of snags ≥ 25.4 cm dbh necessary to support maximum densities of hairy woodpeckers has been estimated to range from 180/40 ha (Thomas et al. 1979) to 200/40 ha (Evans and Conner 1979), or 4.5 to 5 snags/ha; a snag density of 5/ha is assumed to represent optimal conditions for reproduction (Figure 1a). This estimate refers specifically to nesting and roosting requirements and may not adequately satisfy foraging needs (Conner, unpubl.). Potential population density is assumed to decrease proportionally with a decrease in snag density. Although I assume in this model that low snag densities will support low woodpecker densities, Bull (1978) assumed that snag densities <40% of those needed for maximum population density would not support a self-sustaining population.

Figure 1. Relationships between variables used to evaluate reproductive habitat for the hairy woodpecker and suitability levels for the variables.

Hairy woodpeckers can excavate cavities in live trees provided that heartrot is present, and thus may inhabit a forested area even in the absence of snags. Runde and Capen (1987) believed that trees >30 cm dbh would be most useful to hairy woodpeckers, downy woodpeckers, and yellow-bellied sapsuckers (Syphrapicus varius). For this model, I assume that if the average dbh of overstory trees is \geq 38 cm, then trees will be of optimum size for nesting. I assume that an adequate number of available (i.e., with heartrot) live trees will be present if the average dbh of overstory trees is \geq 38 cm. There is little evidence correlating tree diameter and presence of heartrot, but the alternative is to physically examine trees for heartrot; this level of detail is presumed to be too great for the typical application of this model. Use of the average dbh of overstory trees does not consider the absolute number of available live trees. I assume that if an area meets the minimum requirements to be classified as a forest and is >4 ha, then the total number of trees available for potential nesting will be optimal. Assuming that adequate numbers of trees are present, the size and condition of the trees will determine whether the nesting potential will be low or high. The minimum reported dbh of a tree used for nesting by hairy woodpeckers is 20.1 cm (Conner et al. 1975). Thus, I assume that optimal conditions for this variable exist when the average dbh of overstory trees is \geq 38 cm, and that conditions are unsuitable when the average dbh of overstory trees is \leq 20 cm (Figure 1b). The values defining optimum and suitable levels of this variable are based on results of the field test mentioned earlier.

Overall nesting suitability is a function of the availability of snags or live trees. In the field test, experts consistently rated habitats without snags lower than habitats with snags (O'Neil et al. 1988), presumably because hairy woodpeckers cannot excavate in undecayed trees and prefer to forage on dead snags (Conner, unpubl.). Habitat suitability ratings in habitats without snags that were otherwise suitable were generally between 0.7 and 0.8 (on a O-1 scale). I assume, therefore, that habitats without snags (i.e., all potential nest sites are in live trees) will have a maximum suitability rating of 0.75. An overall suitability index for nesting (SIN), based on the relationships described above, can be determined with Equation 1.

$$SIN = SIV1 + (0.75 \times SIV2)$$
 (1)

[Note: If the value resulting from Equation 1 exceeds 1.0, it should be set to 1.0.]

<u>Cover component</u>. Besides having sufficient potential nest sites, at least three other habitat factors affect the overall suitability of a habitat for hairy woodpeckers. These three factors are the seral stage of a forest stand, the degree of canopy cover of the forest, and the proportion of pines in the canopy. These variables are assumed to influence food availability, foraging, nesting suitability, and cover, but are aggregated into a cover component in this model. Because these factors affect overall habitat suitability, they will be used in this model as modifiers of the reproductive value. A measure of the seral stage of a forest is the average diameter of the overstory trees. Hairy woodpeckers may inhabit young forests, but at lower densities than in older forests. Because they do inhabit forests in a variety of seral stages, however, this habitat variable should not be strictly limiting. I assume in this model that the optimal seral stage exists when the average dbh of overstory trees is >25 cm (Figure 2a). When the average dbh of optimum, i.e., a suitability index of 0.5.

The literature suggests that hairy woodpeckers apparently prefer forests of moderate canopy cover. Habitat ratings by species experts in the field test, however, tended to be higher in forest stands with a dense canopy, except that closed canopy stands were generally rated lower than stands with <100% canopy cover (O'Neil et al. 1988). I assume that optimal conditions for this variable occur at 85% to 90% (Figure 2b) with complete canopy cover representing less than optimal habitat. I further assume that canopy cover <15% will provide unsuitable habitat conditions. Since the definition of a forest is a cover type with at least 25% tree canopy cover, any forest will have canopy conditions of some positive suitability level for hairy woodpeckers.

Hairy woodpeckers inhabit a variety of deciduous, coniferous, and mixed deciduous-coniferous habitats. Habitat ratings by experts were negatively correlated (r=-0.91, P<0.001) with the percent canopy closure of pines; sites completely dominated by pines received relatively low habitat ratings (O'Neil et al. 1988). I assume in this model that an increase in the canopy cover of pines in a stand will generally reflect a decrease in habitat suitability for the hairy woodpecker, although a small amount of pines ($\leq 10\%$ canopy cover) is assumed to contribute to the diversity of cover and prey (Figure 2c). Sites completely dominated by pines are assumed to have a suitability index for this variable of 0.2. The apparent influence of pines on hairy woodpecker habitat suitability described above probably does not apply in western coniferous forests (C.E. Bock, Environmental, Population and Organismic Biology, University of Colorado, Boulder; letter dated February 24, 1986). I recommend that the variable "percent canopy cover of pines" be deleted from the model for application in western coniferous forests. It is unclear whether a similar negative relationship exists between other species of conifers in eastern forests and perceived habitat suitability for the hairy woodpecker.

Results from the field test of the earlier model indicated that the product of the suitability indices (Equation 2) for the cover component variables most closely reflected habitat ratings by species experts (O'Neil et al. 1988).

$$SIC = SIV3 \times SIV4 \times SIV5$$
(2)

As long as an area is classified as a forested type, all of the variables in Equation 2 will be greater than zero, and the index value for the cover component will likewise be greater than zero.

Figure 2. Relationships between variables used to evaluate cover for the hairy woodpecker and suitability levels for the variables.

<u>HSI determination</u>. The suitability index for the cover component is assumed to directly modify the suitability index for the reproduction component (Equation 3) to yield an overall HSI value for the hairy woodpecker in the habitat being evaluated. At optimal cover component conditions (i.e., SIC=1.0), the reproduction component will determine the habitat suitability index. If cover conditions are anything less than optimum, then the reproduction value will be reduced based on the quality of the cover conditions.

$$HSI = SIN \times SIC, \text{ or}$$
$$HSI = [SIV1 + (0.75 \times SIV2)] \times (SIV3 \times SIV4 \times SIV5)$$
(3)

[Note: In instances where SIN >1.0, it should be set equal to 1.0 prior to using Equation 3.]

Application of the Model

Summary of model variables. Several habitat variables are used in this model to evaluate habitat suitability for the hairy woodpecker. The relation-ships between habitat variables, life requisites, cover types, and an HSI are summarized in Figure 3. The definitions and suggested measurement techniques (Hays et al. 1981) for the variables used in this model are listed in Figure 4.

Figure 3. Relationships of habitat variables, life requisites, and cover types to the HSI for the hairy woodpecker.

Variable (definition)	Cover types	Suggested technique
Number of snags ≥25 cm dbh per ha [actual or estimated number of standing dead trees ≥25 cm dbh and ≥1.8 m tall. Trees in which ≥50% of the branches have fallen, or are present but no longer bear foliage, are to be considered snags].	DF,EF,DFW, EFW	Quadrat, remote sensing
Mean dbh of overstory trees [the mean diam- eter at breast height (1.4 m) above the ground of those trees that are ≥80% of the height of the tallest tree in the stand].	DF,EF,DFW, EFW	Diameter tape
Percent canopy cover of trees [the percent of the ground surface that is shaded by a vertical pro- jection of all woody vegetation >6.0 m tall].	DF,EF,DFW, EFW	Line intercept, remote sensing
Percent overstory pine canopy closure [the percent of the ground surface that is shaded by a vertical projection of all pines (<u>Pinus</u> spp.) >6.0 m tall and ≥80% of the height of the tallest tree in the stand; re- commended for use in eastern U.S. forests only (see text for explanation)].	DF,EF,DFW, EFW	Line intercept, remote sensing

Model assumptions. A number of assumptions were made in the development of this HSI model.

- 1. The criteria identified for evaluation of hairy woodpecker habitat are generally assumed to be appropriate throughout the range of the species. Many of the variables and variable relationships identified in the model resulted from a field test of an earlier HSI model in eastern Tennessee. As a result, the model is probably best suited for application in the southeastern United States. No information is available to indicate the model's applicability to other parts of the United States, except there is adequate information that the presumed negative influence of pines does not apply to western U.S. forests (see number 7 below).
- Nest sites can be provided by a combination of snags and live trees, but live trees in the absence of snags cannot provide optimal nesting habitat.
- 3. A measure of the average diameter at breast height of overstory trees is assumed to be an adequate estimator of the suitability of live trees for nesting. An adequate number of trees in suitable condition (i.e., with decayed heartwood) is assumed to be present as long as the cover type is classified as a forest (i.e., has ≥25% canopy cover) and tree diameter is suitable.
- 4. All tree species are assumed to be available for excavation by hairy woodpeckers. It is possible that some species may not typically have decayed heartwood and, therefore, will be unsuitable for excavation. It is also possible that some tree species will be unsuitable for excavation because of resins or the density of the wood. Little definitive evidence is available, however, to determine whether some tree species are absolutely unsuitable for excavation by hairy woodpeckers.
- 5. Hairy woodpeckers can inhabit a variety of forested habitats, but potential nesting in live trees will only be provided by older forest stands with large trees.
- 6. Hairy woodpeckers prefer forest stands with a dense canopy. This assumption may be valid in the southeastern United States but may be invalid in the western United States, where the forest canopy is generally less dense than in the east. The relationships described for percent canopy cover of trees and habitat suitability (Figure 2b) may need to be redefined for use in western forest habitat if the standard of comparison in such applications is intended to be the best regional habitat. Use of the model without modification will yield outputs based on a standard of comparison developed in the southeastern United States.

- 7. The presence of pines above a minimal level (10%) is considered to be a negative factor in habitat suitability for the hairy woodpecker in this model (Figure 2c). Pine and other coniferous forests in the western United States, however, are regularly used by hairy woodpeckers. I recommend that this variable be eliminated for application in western coniferous forests.
- 8. The hairy woodpecker breeds and winters throughout most of North America. I assume in this model that the year-round suitability of a habitat is a function of the habitat suitability during both the reproductive and nonreproductive seasons. Model users who wish to evaluate either of the seasons rather than both can simply use the appropriate portion of this model. Users should be aware that model outputs in such instances will refer only to a portion of the yearround needs of the hairy woodpecker.

SOURCES OF OTHER MODELS

Conner and Adkisson (1976) developed a model to distinguish between "possible nesing habitat" and "not nesting habitat" for the hairy woodpecker in oak-hickory forests of southwestern Virginia. Three variables were included in the model: basal area (m^2/ha) , canopy height to crown cover (m), and stem density (number/ha). The model includes coefficients for the three variables, an aggregation function, and a linear decision scale. The model was applied to two groups, the first consisting of stands containing hairy woodpecker nests, and the second consisting of six random plots in each of five habitat types; results of the analysis were significant (P=0.02).

REFERENCES

- American Ornithologists' Union. 1983. Check-list of North American birds. 6th ed. American Ornithologists' Union. Washington, DC. 877 pp.
- Anderson, S.H., and H.H. Shugart, Jr. 1974. Habitat selection of breeding birds in an east Tennessee deciduous forest. Ecology 55(4):828-837.
- Bailey, A.M., and R.J. Niedrach. 1965. Birds of Colorado. 2 Vols. Denver Mus. Nat. Hist., Denver, CO. 895 pp.
- Balda, R.P., and N. Masters. 1980. Avian communities in the pinyon-juniper woodland. Pages 146-169 in R.M. DeGraaf and N.G. Tilghman, compilers. Management of western forests and grasslands for nongame birds. U.S. For. Serv. Gen. Tech. Rep. INT-86.
- Beal, F.E.L. 1911. Food of the woodpeckers of the United States. U.S. Dept. Agric. Biol. Surv. Bull. 37. 64 pp.

- Bull, E.L. 1978. Specialized habitat requirements of birds: snag management, old growth, and riparian habitat. Pages 74-82 in R.M. DeGraaf, tech. coord. Proceedings of the workshop on nongame bird habitat management in the coniferous forests of the western United States. U.S. For. Serv. Gen. Tech. Rep. PNW-64.
- Calef, R.T. 1953. Ecological analysis of the flora and vertebrate fauna of Funks Forest National Area, McClean Co., Ill. M.S. Thesis. University of Illinois. 85 pp. [Cited by Graber et al. (1977).]
- Conner, R.N. 1980. Foraging habitats of woodpeckers in southwestern Virginia. J. Field Ornith. 51(2):119-127.
- Conner, R.N., and C.S. Adkisson. 1976. Discriminant function analysis: a possible aid in determining the impact of forest management on woodpecker nesting habitat. Forest Sci. 22(2):122-127.
- Conner, R.N., and C.S. Adkisson. 1977. Principal component analysis of woodpecker nesting habitat. Wilson Bull. 89(1):122-129.
- Conner, R.N., and H.S. Crawford. 1974. Woodpecker foraging in Appalachian clearcuts. J. For. 72:564-566.
- Conner, R.N., R.G. Hooper, H.S. Crawford, and H.S. Mosby. 1975. Woodpecker nesting habitat in cut and uncut woodlands in Virginia. J. Wildl. Manage. 39(1):144-150.
- Conner, R.N., O.K. Miller, Jr., and C.S. Adkisson. 1976. Woodpecker dependence on trees infected by fungal heart rots. Wilson Bull. 88(4):575-581.
- Diem, K.L., and S.I. Zeveloff. 1980. Ponderosa pine bird communities. Pages 170-197 in R.M. DeGraaf and N.G. Tilghman, compilers. Management of western forests and grasslands for nongame birds. U.S. For. Serv. Gen. Tech. Rep. INT-86.
- Evans, K.E., and R.N. Conner. 1979. Snag management. Pages 214-225 in R.M. DeGraaf and K.E. Evans, compilers. Management of northcentral and northeastern forests for nongame birds. U.S. For. Serv. Gen. Tech. Rep. NC-51.
- Fitch, H.S. 1958. Home ranges, territories, and seasonal movements of vertebrates of the Natural History Reservation. Univ. Kansas Publ. Mus. Nat. Hist. 11(3):63-326.
- Galli, A.E., C.F. Leck, and T.T. Forman. 1976. Avian distribution patterns in forest islands of different sizes in central New Jersey. Auk 93(2):356-364.
- Gamboa, G.J., and K.M. Brown. 1976. Comparative foraging behavior of six sympatric woodpecker species. Proc. Iowa Acad. Sci. 82:179-181.

- Graber, J.W., R.R. Graber, and E.L. Kirk. 1977. Illinois birds: Picidae. Illinois Nat. Hist. Surv. Biol. Notes 102. 73 pp.
- Haapanen, A. 1965. Bird fauna of the Finnish forests in relation to forest succession. I. Ann. Zool. Fenn. 2:154-196. [Cited by Smith (1980).]
- Hardin, K.I., and K.E. Evans. 1977. Cavity nesting bird habitat in the oak-hickory forest ... a review. U.S. For. Serv. Gen. Tech. Rep. NC-30. 23 pp.
- Hays, R.L., C. Summers, and W. Seitz. 1981. Estimating wildlife habitat variables. U.S. Fish Wildl. Serv. FWS/OBS-81/47. 111 pp.
- Jackman, S.M. 1975. Woodpeckers of the Pacific Northwest: their characteristics and their role in the forests. M.S. Thesis. Oregon State University, Corvallis. 147 pp.
- Kilham, L. 1968. Reproductive behavior of hairy woodpeckers. II. Nesting and habitat. Wilson Bull. 80(3):286-305.
- Kisiel, D.S. 1972. Foraging behavior of <u>Dendrocopus villosus</u> and <u>D</u>. <u>pubescens</u> in eastern New York state. Condor 74(4):393-398.
- Koplin, J.R. 1967. Predatory and energetic relations of woodpeckers to the Engelmann spruce beetle. Ph.D. Dissertation. Colorado State University, Ft. Collins. 187 pp.
- Kroll, J.C., and R.R. Fleet. 1979. Impact of woodpecker predation on overwintering within-tree populations of the Southern pine beetle (<u>Dendroctonus</u> <u>frontalis</u>). Pages 269-281 <u>in</u> J.G. Dickson, R.N. Conner, R.R. Fleet, J.C. Kroll, and J.A. Jackson, eds. The role of insectivorous birds in forest ecosystems. Academic Press, New York.
- Larrison, E.J., and K.G. Sonnenberg. 1968. Washington birds: their location and identification. Seattle Audubon Society, Seattle. 258 pp.
- Lawrence, L. DeK. 1966. A comparative life-history study of four species of woodpeckers. Ornithol. Monogr. No. 5, American Ornithologists' Union. 156 pp.
- Mannan, R.W. 1977. Use of snags by birds, Douglas-fir region, western Oregon. M.S. Thesis. Oregon State University, Corvallis. 114 pp.
- Mannan, R.W., E.C. Meslow, and H.M. Wight. 1980. Use of snags by birds in Douglas-fir forests, western Oregon. J. Wildl. Manage. 44(4):787-797.
- Massey, C.L., and N.D. Wygant. 1973. Woodpeckers: most important predators of the spruce beetle. Colorado Field Ornithol. 16:4-8.
- Meslow, E.C., and H.M. Wight. 1975. Avifauna and succession in Douglas-fir forests of the Pacific Northwest. Pages 266-271 in D.R. Smith, tech. coord. Management of forest and range habitats for nongame birds. U.S. For. Serv. Gen. Tech. Rep. WO-1.
- Noon, B.R., V.P. Bingham, and J.P. Noon. 1979. The effects of changes in habitat on northern hardwood forest bird communities. Pages 33-48 in R.M. DeGraaf and K.E. Evans, compilers. Management of northcentral and northeastern forests for nongame birds. U.S. For. Serv. Gen. Tech. Rep. NC-51.
- O'Neil, L.J., T.H. Roberts, J.S. Wakeley, and J.W. Teaford. 1988. A procedure to modify Habitat Suitability Index models. Wildl. Soc. Bull. 16(4):In press.
- Raphael, M.G., and M. White. 1984. Use of snags by cavity-nesting birds in the Sierra Nevada. Wildl. Monogr. 86. 66 pp.
- Robbins, C.S. 1979. Effects of forest fragmentation on bird populations. Pages 199-212 in R.M. DeGraaf and K.E. Evans, compilers. Management of northcentral and northeastern forests for nongame birds. U.S. For. Serv. Gen. Tech. Rep. NC-51.
- Runde, D.E., and D.E. Capen. 1987. Characteristics of northern hardwood trees used by cavity-nesting birds. J. Wildl. Manage. 51(1):217-223.
- Scott, V.E., J.A. Whelan, and P.L. Svoboda. 1980. Cavity-nesting birds and forest management. Pages 311-324 in R.M. DeGraaf and N.G. Tilghman, compilers. Management of western forests and grasslands for nongame birds. U.S. For. Serv. Gen. Tech. Rep. INT-86.
- Smith, K.G. 1980. Nongame birds of the Rocky Mountain spruce-fir forests and their management. Pages 258-279 in R.M. DeGraaf and N.G. Tilghman, compilers. Management of western forests and grasslands for nongame birds. U.S. For. Serv. Gen. Tech. Rep. INT-86.
- Stallcup, P.L. 1966. Spatio-temporal relationships of nuthatches and woodpeckers in northern Colorado. Ph.D. Dissertation. Colorado State University, Ft. Collins. 111 pp.
- Stauffer, D.F., and L.B. Best. 1980. Habitat selection by birds of riparian communities: evaluating effects of habitat alterations. J. Wildl. Manage. 44(1):1-15.
- Thomas, J.W., R.G. Anderson, C. Maser, and E.L. Bull. 1979. Snags. Pages 60-77 <u>in</u> J.W. Thomas, tech. ed. Wildlife habitats in managed forests: the Blue Mountains of Oregon and Washington. U.S. For. Serv. Agric. Handb. 553.
- U.S. Fish and Wildlife Service. 1981. Standards for the development of Habitat Suitability Index models. 103 ESM. U.S. Fish Wildl. Serv., Div. Ecol. Serv. n.p.

- Verner, J. 1980. Bird communities of mixed-conifer forests of the Sierra Nevada. Pages 198-223 in R.M. DeGraaf and N.G. Tilghman, compilers. Management of western forests and grasslands for nongame birds. U.S. For. Serv. Gen. Tech. Rep. INT-86.
- Zarnowitz, J.E., and D.A. Manuwal. 1985. The effects of forest management on cavity-nesting birds in northwestern Washington. J. Wildl. Manage. 49(1):255-263.

50272 - 101			
REPORT DOCUMENTATION	1. REPORT NO.	2. 3. Recipient	t's Accession No.
PAGE	Biological Report 82(10.146)		
4. Title and Subtitle		5. Report D Sep	tember 1987
Habitat Suitability	Index Models: Hairy Woodpecke	r 6.	
7. Author(s)	· · · · · · · · · · · · · · · · · · ·	8. Performi	ng Organization Rept. No.
P. J. Sousa			
9. Performing Organization Name a	Address National Ecology Researc	h Center	/Task/Work Unit No.
	U.S. Fish and Wildlife S Drake Creekside One Bldd	ervice	t(C) or Grant(G) No.
	2627 Redwing Rd	· (C)	
	Fort Collins, CO 80526-	·2899 (G)	
12. Sponsoring Organization Name a	Address National Ecology Research Research and Development	h Center 13. Type of	Report & Period Covered
	Fish and Wildlife Servio	;e	······································
	Department of the Inter-	or 14.	
15. Supplementary Notes	washington, nc20/40	•	
16. Abstract (Limit: 200 words)	• • • • • • • • • • • • • • • • • • • •		
and is scaled to pro habitat). HSI model previously developed	duce an index between 0.0 (unsu s are designed to be used with by the U.S. Fish and Wildlife	itable habitat) and 1 Habitat Evaluation Pr Service.	.0 (optimum ocedures
7. Document Analysis a. Descript	Ors		
Birds			
Wildlife			
Habitability			
Mathematical models			
b. Identifiers/Open-Ended Terms			
Hairy woodpecker			
<u>Picoides</u> <u>villosus</u> Habitat suitability			
c. COSATI Field/Gmun			
8. Availability Statement		19. Security Class (This Report)	21. No. of Pages
Polosco unlimitod		Unclassified	19
		20. Security Class (This Page) Unclassified	22. Price
ee ANSI-239.18)	See Instructions on Reve	rse	OPTIONAL FORM 272 (4-77)

REGION 1

Regional Director U.S. Fish and Wildlife Service Lloyd Five Hundred Building, Suite 1692 500 N.E. Multnomah Street Portland, Oregon 97232

REGION 4

Regional Director U.S. Fish and Wildlife Service Richard B. Russell Building 75 Spring Street, S.W. Atlanta, Georgia 30303

REGION 2

Regional Director U.S. Fish and Wildlife Service P.O. Box 1306 Albuquerque, New Mexico 87103

REGION 5

Regional Director U.S. Fish and Wildlife Service One Gateway Center Newton Corner, Massachusetts 02158

REGION 7

Regional Director U.S. Fish and Wildlife Service 1011 E. Tudor Road Anchorage, Alaska 99503

REGION 3

Regional Director U.S. Fish and Wildlife Service Federal Building, Fort Snelling Twin Cities, Minnesota 55111

REGION 6

Regional Director U.S. Fish and Wildlife Service P.O. Box 25486 Denver Federal Center Denver, Colorado 80225

Preserve Our Natural Resources

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration. APPENDIX C: FIELD DATA SHEETS

DATE $28/21$ TIME $3:15$ NAMES State $240-3$ NAMES NAMES $429-35$ WYPT $41-New$ PLOT#/LOCATION $42/2$	P.Z.
RANSECT TOTAL LENGTH (FT) 80? 1 80? 1	190
$\frac{\text{SG MODEL}: VI (SHRUB<3M) (FT) \frac{2}{20} / 20 / 20}{\text{V2}^{2} (\text{indiv tree hts, ft}) \frac{20}{20} \frac{20}{10} \frac{20}{10} \frac{20}{10} \frac{10}{10}}{\frac{20}{10} \sqrt{2}}$	230 331 230 331
V4 LAYER CATEGORY (SELECT 1.2.3.4.5) 5 1 0 5 1	ic.
SNAG (indv diam, in) 6"- 1 m b about 2 preces Par V5, snag count >4"_1_	twas SID)
V6 ALL WOODY 75 1.75 1	
RFCT MODEL: V1(tree hts, see above)	
V2 RIPARIAN STAND WIDTH (all woody + small gaps) $\frac{75'}{80'}$	/
V3 TREE CANOPY CLOSURE 40' 1 50 1	
V4 # SPECIES (list names) <u>Peccon V0, W. Haw</u> , <u>BS</u> UNID V5 UNDERSTORY DENSITY @2FT 80/60/ @14FT_50/40/AVERAGE 75/50/	reew/how y seed held
2-1 /	
YW MODEL: V1 DECID SHRUB COVER 15 1 6D 1	
V2 SHRUB HTS (ft) <u>T</u> <u>2+M</u> <u>almost all</u> (nearest .1M) <u>T</u> <u>1.5</u> <u>2+M</u> <u>verich</u>	Bullaren
<u>YW MODEL</u> : VI DECID SHRUB COVER <u>75</u> <u>60</u> <u>7</u> V2 SHRUB HTS (ft) <u>1</u> <u>2</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>6</u> <u>6</u> <u>7</u> (nearest .1M) <u>1</u> <u>1</u> <u>5</u> <u>2</u> <u>4</u> <u>4</u> <u>7</u>	Bullarea 15/8 (646) wills 21'
<u>YW MODEL</u> : V1 DECID SHRUB COVER <u>75</u> <u>60</u> <u>75</u> V2 SHRUB HTS (ft) <u>1</u> <u>2</u> <u>4</u> <u>M</u> <u>almost</u> <u>all</u> (nearest .1M) <u>1.5</u> <u>2</u> <u>4</u> <u>M</u> <u>vouich</u> <u>4</u> V3 hydrophytic SHRUB COVER <u>75</u> <u>75</u> <u>75</u> <u>75</u> <u>75</u> <u>75</u> <u>75</u> <u>75</u>	Builderea 15/8 (646) wills 21' 1824 Groups
<u>YW MODEL</u> : VI DECID SHRUB COVER <u>15</u> <u>160</u> <u>1</u> V2 SHRUB HTS (ft) <u>1</u> <u>2</u> <u>4</u>	Builderen 15 10/8 (646) wis 21' 1820 Groups UNIS Pf 50''w: 11cto 11 cuike 5'pe,

DATA SHEET TS 30 L HEP P. 20
DATE 12/8/21 TIME 1:17pm NAMES Dave F. Steve Sch
PHOTO# WYPTF New PLOT#/LOCATION #20
TRANSECT TOTAL LENGTH (FT) 80 1 80 1
<u>RSG MODEL</u> : VI (SHRUB<3M) (FT) 20 / 40 / 230 2570 222 22
V_{23}^{2} (indiv tree hts, ft) $18(22)$ 22 400 16 0.70
V2 (TREE>3M) (FT) 20 / 20 / the formation is treated formation by
V4 LAYER CATEGORY (SELECT 1,2,3,4,5) 5 / 6 /
SNAG (indv diam, in) $\frac{44''}{V5}$, snag count >4"
V6 ALL WOODY 45 160' 1
RFCT MODEL: V1(tree hts, see above)
V2 RIPARIAN STAND WIDTH (all woody + small gaps) 45 160 1
V3 TREE CANOPY CLOSURE 20% / 10% /
V4 # SPECIES (list names) Wille, Wille, BB, Rcon, live Cak, Vallar, Oak
V5 UNDERSTORY DENSITY @2FT 56/70/ @14FT 40/30/ AVERAGE 457 50/
YW MODEL: VI DECID SHRUB COVER 40 1 60 1
V2 SHRUB HTS (ft) <u>Ti all 7 2mt</u> (nearest .1M) <u>Ti almostall 22mt (~1.8 marg)</u>
V3 hydrophytic SHRUB COVER 45 1 60 1 Vy Tall tree 0, & Breaching Port (18/24/22/20/20/20) DW MODEL: VI SNAG COUNT >6", see above (1) & morginal port \$ (18/24/22/20/20/20) 6" vo
V2 BASAL AREA (cruz-all or see HW, below) // // // // 12"Perenders
HW MODEL: VI SNAG COUNT >10", see above [16+ chich, opringly] darge V2/V3 DbH overstory 11"(pecm (18,39, 22,28, 26, 22) 40/16a
6 VO 6 perm 640 To without
V4 CANOPY COVER \$ 15% 1 Show Whet

DATA SHEET TS 30 L HEP	P. 19
DATE 2/8/21 TIME 11:21g NAMES Steve Sch. Vier	m/=
PHOTO# 225 WYPT #39-New PLOT#/LOCATION #19	
TRANSECT TOTAL LENGTH (FT) 001 9121 all her	bacen store
RSG MODEL: VI (SHRUB<3M) (FT) 30 / D /	7120 220
V2 (indiv tree hts, ft) $2168 1401 1561 20 130$	1422 - 72 4225
V3 (TREE>3M) (FT) / / / / /	Valley
V4 LAYER CATEGORY (SELECT 1,2,3,4,5) (2) (1) /	
SNAG (indv diam, in) $6'' - 4+ 26'' - 26'''$	<u>P_ <<4</u>)
V6 ALL WOODY $30/\sqrt{9}$	
RFCT MODEL: V1(tree hts, see above)	
V2 RIPARIAN STAND WIDTH (all woody + small gaps) 50 / 0	/
V3 TREE CANOPY CLOSURE	St. St.
V4 # SPECIES (list names) VQ Will Will Will Unid tree ~	JELLE JOD
V5 UNDERSTORY DENSITY @2FT30 (0) @6FT 30101 @14FT_0/_0AVERAGE251_01	Liveoak
YW MODEL: VI DECID SHRUB COVER 30" / 0 /	a . 1
V2 SHRUB HTS (ft) $1 - 1.0 - 1.5 m$ (nearest .1M) $7 - 1.0 - 1.5 m$	Aureluil Hoto
V3 hydrophytic SHRUB COVER 30 / / / / / / / / / / / / / / / / / /	(wilkick 25" (VU 3/6/4)
V2 BASAL AREA (cruz-all or see HW, below)	withushele
HW MODEL: VI SNAG COUNT >10", see above 2 V2/V3 DbH overstory	ptob") 20/20 20/20 Fiz 20/20
V4 CANOPY COVER	

DATA SHEET TS_30_L HEP P
DATE 12/8/21 TIME 1018an NAMES Store Sch, Deve F/ 220-22= #355end WYPT#38 New PLOT#/LOCATION #18
TRANSECT TOTAL LENGTH (FT) 80 1 75 1
$\frac{\text{RSG MODEL: V1 (SHRUB<3M) (FT)}}{\text{V2 (indiv tree hts, ft)}} \frac{45}{25} = \frac{27}{0} = \frac{27}{25} = \frac{27}{0} = 27$
V3 (TREE>3M) (FT) $20 1 30 1$
SNAG (indv diam, in) (<4) $4 + 5''$ $(<4)' 6''$ V5, snag count >4" 2
V6 ALL WOODY 60 1 65 1
RFCT MODEL: V1(tree hts, see above)
V2 RIPARIAN STAND WIDTH (all woody + small gaps) 60 / 70 /
V3 TREE CANOPY CLOSURE 201 651
V4 # SPECIES (list names) W.H, BW, V.O., BB, 2 Ste
V5 UNDERSTORY DENSITY @2FT <u>50 / 30 / 30 / 60 / 40 / 60 / 40 / 60 / 60 / 60 / 6</u>
YW MODEL: VI DECID SHRUB COVER 60 13.0 1 will on India 35
V2 SHRUB HTS (ft) $T_1 = 2 + m + w_{exclust}$ (nearest .1M) $T_2 = 2 + m - allsh cbs = 5737373/3$
V3 hydrophytic SHRUB COVER 60 / 30' / V4 (tall free 0 40' DW MODEL: V1 SNAG COUNT >6", see above 0 500 600 500 500 500 500 500 500 500 5
V2 BASAL AREA (cruz-all or see HW, below)/ //
HW MODEL: VI SNAG COUNT >10", see above VO V2/V3 DbH overstory 19/23
V4 CANOPY COVER $15 140'1$

3 · · · · ·
DATA SHEET TS_30_L HEP P
$\frac{12 \sqrt{7/2}}{12 \sqrt{7-21}} \text{ TIME } \frac{3.30}{335} \text{ NAMES } \frac{12 \sqrt{7-21}}{100} \text{ WYPT } \frac{3.35}{100} \text{ PLOT } \frac{1000 \text{ Mir.}}{1000 \text{ Mir.}} \text{ PLOT } \frac{1000 \text{ Mir.}}{1000 \text{ Mir.}}$
TRANSECT TOTAL LENGTH (FT) 100 / 100 /
$\frac{\text{RSG MODEL}: V1 (SHRUB<3M) (FT)}{V2 (indiv tree hts, ft)} \xrightarrow{35} 185 1 200 240 440 440 6-700 10520+ 000 200 240 440 6-700 10520+ 000 200 000 000 000 000 000 000 000 $
V4 LAYER CATEGORY (SELECT 1,2,3,4,5)
SNAG (indv diam, in) $\frac{4'}{6}$
RECT MODEL : V1(tree hts. sec above)
V2 RIPARIAN STAND WIDTH (all woody + small gaps)
V3 TREE CANOPY CLOSURE 5% / 35% /
VA # SPECIES (list names) BULL SI VW W
V5 UNDERSTORY DENSITY @2FT 50 /85/ @6FT 30 /60 / 60 / 60 / 60 / 60 / 60 / 60 /
YW MODEL: V1 DECID SHRUB COVER 50 / 85 /
V2 SHRUB HTS (ft) 1.5m 2M Note interpret as 30 ket in a lot to the interpret as 30 ket in the sector of the sector
V3 hydrophytic SHRUB COVER 50 7 85 7 20"willing 20"will
V2 BASAL AREA (cruz-all or see HW, below) / / /
$\frac{\text{HW MODEL: V1 SNAG COUNT > 10", see above \phi}{\text{V2/V3 DbH overstory}} (39.8-9') (39.8-9') (20') (20') (30.000) (39.8-9') $
V4 CANOPY COVER $\cancel{123}$

But a talla Mayree DATA SHEET TS_30_L HEP Steneschi Jess, Mir NAMES DATE 2 TIME 2:22 #35 PLOT#/LOCATION #16 WYPT KANE PHOTO# 120 TRANSECT TOTAL LENGTH (FT) RSG MODEL: V1 (SHRUB<3M) (FT) V2 (indiv tree hts, ft) 130, V3 (TREE>3M) (FT) V4 LAYER CATEGORY (SELECT 1,2,3,4,5) SNAG (indv diam, in) V5, snag count >4" V6 ALL WOODY 135 1 9 RFCT MODEL: V1(tree hts, see above) 8210 V2 RIPARIAN STAND WIDTH (all woody + small gaps) aulis Record V3 TREE CANOPY CLOSURE 80 V4 # SPECIES (list names) Silve W.II, / relat Betall @6FT<u>9/)/30</u>/ V5 UNDERSTORY DENSITY @2FT 0 1857, AVERAGE @14FT 80 / 10 / YW MODEL: V1 DECID SHRUB COVER 135 nouncel V2 SHRUB HTS (ft) Recipil. (nearest .1M) V3 hydrophytic SHRUB COVER talltice DW MODEL: V1 SNAG COUNT >6", see above V2 BASAL AREA (cruz-all or see HW, below) marting" HW MODEL: V1 SNAG COUNT >10", see above V2/V3 DbH overstory 6 1411 V4 CANOPY COVER

	DATA SHEET TS_30_L HEP P.	5
	DATE 2/21 TIME 12420 NAMES Stevesch, Jess, Mir 734 Send NAMES Stevesch, Jess, Mir 734 Send NAMES Stevesch, Jess, Mir	weBerd
	TRANSECT TOTAL LENGTH (FT) /00 / 100 /	
	RSG MODEL: V1 (SHRUB<3M) (FT) 40 / 30 / 20	BLI BW SSO B
	V4 LAYER CATEGORY (SELECT 1,2,3,4,5)	
	SNAG (indv diam, in) 10 " " " "	
	V6 ALL WOODY 50 / 50 /	
	RFCT MODEL: V1(tree hts, see above)	
	V2 RIPARIAN STAND WIDTH (all woody + small gaps) 90 / 60 /	2
	V3 TREE CANOPY CLOSURE	
	V4 # SPECIES (list names) Reduilles BB, Butter Gen Wirth Species (Ork	Cak
	V5 UNDERSTORY DENSITY @2FT_50/70/ @14FT_0/_5/	Unir
	<u>YW MODEL</u> : VI DECID SHRUB COVER <u>SD</u> / <u>SD</u> / V2 SHRUB HTS (ft) <u>TIN</u> - <u>avess</u> is <u>No te; can't be "half"</u> (nearest .1M) <u>TON hilf SDM</u> <u>Kan 22 m 30%</u>	BW-16' dus W:11-10's-, W:11-24 de
y	V3 hydrophytic SHRUB COVER 40 1 50 1	Bw - 6"
2	DW MODEL: V1 SNAG COUNT >6", see above	W11-20'
	V2 BASAL AREA (cruz-all or see HW, below) ////////////////////////////////////	UNITE -18
	HW MODEL: VI SNAG COUNT >10", see above 1 V2/V3 DbH overstory 16 2" 1378" 7 ee 23" '13 10" (we he was been been to be wat the was the set of th	1. 11 ws 304 "
	V4 CANOPY COVER / 10 /	. /

	DATA SHEET TS_30_L HEP P
	DATE 2/21 TIME 1155pm NAMES Steve Sch JESS, Mir.
ŝ	PHOTO# WYPT#34Nerd PLOT#/LOCATION \$14
	TRANSECT TOTAL LENGTH (FT) 100 / 100 / 154 184
	RSG MODEL: VI (SHRUB<3M) (FT) 32 / 40 / 7202 4210
	V_2^{3} (indiv tree hts, ft) $250 - 259 - 200 - 280$
	V3 (TREE>3M) (FT) 45 1 30 1 with weekst should
	V4 LAYER CATEGORY (SELECT 1,2,3,4,5) 5 / 5 /
	SNAG (indv diam, in) 4" 6" 8" (~ 4 × 3', some land on bigger V5, snag count >4" 3+
	V6 ALL WOODY 77 174 1
	RFCT MODEL: V1(tree hts, see above)
	V2 RIPARIAN STAND WIDTH (all woody + small gaps) 100 / 00 /
	V3 TREE CANOPY CLOSURE 40°/4 30°6 1 500 1 500 bish
č.	V4 # SPECIES (list names) BBEIM, Rolw, BW, UNID, TS 5
	V5 UNDERSTORY DENSITY @2FT <u>80 / 60 /</u> @14FT <u>40/20/</u> AVERAGE <u>530/</u>
	YW MODEL: VI DECID SHRUB COVER 77 / 74 /
	$\frac{\text{V2 SHRUB HTS (ft)}}{(\text{nearest .1M})} = \frac{1.3 \text{M} \text{BB + } \sqrt{2} + \sqrt{22 \text{M}^{+} \text{M} / \omega}}{\frac{12.0}{7 \times 50\%} + 40\% 2 \text{M} \text{M} / \omega} = \frac{1.3 \text{M} \text{BW} + \sqrt{2} \text{M} / \omega}{120\%} = \frac{1.3 \text{M} \text{BW} + \sqrt{2} \text{M} / \omega}{120\%}$
#	V3 hydrophytic SHRUB COVER 77 174 1 (Vy full free - 20/0 <u>DW MODEL</u> : VI SNAG COUNT >6", see above 2+ dree/stendimented stend Multure - 20/0 <u>DW MODEL</u> : VI SNAG COUNT >6", see above 2+ dree/stendimented stend Multure - 20/0 <u>DW MODEL</u> : VI SNAG COUNT >6", see above 2+ dree/stendimented stend <u>Stend</u>
	V2 BASAL AREA (cruz-all or see HW, below)
	HW MODEL: VI SNAG COUNT >10", see above V2/V3 DbH overstory (24" willow) 12" willow Bw, 4-55 kmc 8") 25 straft. Frzezy ("
Ĵ	V4 CANOPY COVER 30% / 20% /

DATA SHEET TS_30_L HEP	P. <u>#13</u>
DATE 12/7/21 TIME Oignay NAMES Stew Sch Jess, W	1 cr
PHOTO##206-209 WYPT#33 New PLOT#/LOCATION#3	
TRANSECT TOTAL LENGTH (FT) 100 1 1001	154 184
RSG MODEL: VI (SHRUB<3M) (FT) 80 / 90 / 205 Hackery Hackery Bury BW/ 30 30	ATI T21 200 207
V2 (min view ins, ii) 500 20 10	-
V3 (TREE>SM) (FT) S / S / S / S / S / S / S / S / S / S	
V4 LAYER CATEGORY (SELECT 1,2,3,4,5)/	
SNAG (indv diam, in) 4 4 5 4 $-$	
V6 ALL WOODY 85 1 85 1	
RFCT MODEL: V1(tree hts, see above)	
V2 RIPARIAN STAND WIDTH (all woody + small gaps) 100 / 100	_/
V3 TREE CANOPY CLOSURE 5 / 0 /	auto the
V4 # SPECIES (list names) BW, Huckberry, WHI , Will ,	reyipp
V5 UNDERSTORY DENSITY @2FT <u>90 / 90 /</u> @6FT <u>30 / 50 /</u> @14FT <u>/0 / 0/</u> [AVERAGE <u>35 735 /</u>	Baselerren Blu 625
YW MODEL: V1 DECID SHRUB COVER SO / 80 /	HT HOM181
(nearest .1M) $T_1 = \frac{MBB}{T_2} \frac{3mBB}{2mt} \frac{3mBB}{1mt} \frac{2mt}{1}$	BU 644 Lise 10/4
V3 hydrophytic SHRUB COVER 201 80 1	BW -24" toll BW 24" tolal
V2 BASAL AREA (cruz-all or see HW, below) / /	W. 1100 - 95 4
HW MODEL: V1 SNAG COUNT >10", see above φ V2/V3 DbH overstory $10/9$ 12 2 10 15	BW 30 Willow
10	
V4 CANOPY COVER \cancel{p} / \cancel{p} /	

	DATA SHEET TS_30_L HEP P
	DATE 1/21 TIME 913 Mm, NAMES Steve Sol, Jesc, Mir
2	PHOTO# WYPT 432 New PLOT#/LOCATION #R Sustances Rd T
	TRANSECT TOTAL LENGTH (FT) 100 / 100
	RSG MODEL: V1 (SHRUB<3M) (FT) $\frac{15}{15}$ $\frac{160}{15}$ $\frac{1202}{15}$ $\frac{1202}{15}$ $\frac{1202}{15}$ $\frac{1}{1203}$
	V3 (TREE>3M) (FT) 30 / 3) /
	V4 LAYER CATEGORY (SELECT 1,2,3,4,5) 5 / 5 /
	SNAG (indv diam, in) 28" 22"
	V6 ALL WOODY 100 1 751
	RFCT MODEL: V1(tree hts, see above)
	V2 RIPARIAN STAND WIDTH (all woody + small gaps) ////////////////////////////////////
)	V3 TREE CANOPY CLOSURE 20 1 30 1 V4 # SPECIES (list names) Bay BB, Will, Bakey
	V5 UNDERSTORY DENSITY @2FT 95 180 1 @6FT 60 160 1
	<u>YW MODEL</u> : VI DECID SHRUB COVER 95 1 75 1 [1] [1] [1] [1] [1] [1] [1] [1] [1] [
	v2 SHRUB HTS (ft) <u>T_</u> <u>preductivently</u> 2+ m (+120 BB have (nearest .1M) <u>F_</u> <u>BB(1, 2m) + 1x22a</u> 4420
sf (V3 hydrophytic SHRUB COVER 95 / 75 ./ 4 75
75	DW MODEL: VI SNAG COUNT >6", see above 3
	V2 BASAL AREA (cruz-all or see HW, below)/ / /
	<u>HW MODEL:</u> V1 SNAG COUNT >10", see above 2 V2/V3 DbH overstory <u>19</u> <u>13</u> <u>32</u> <u>4"</u> <u>4</u> <u>8</u>
_	
	NA GANGEN CONTE 20 / 10 /

V4 CANOPY COVER 20 / 20 /

DATA SHEET TS_30_L HEP	P
DATE 7/3/21 TIME 418 pm	NAMES Sch Mcl Sav sust before
PHOTO# WYPT	PLOT#/LOCATION 4/1) Past Parely gile
TRANSECT TOTAL LENGTH (FT)	0 1 100 1 J
RSG MODEL: V1 (SHRUB<3M) (FT)	40,100,100,100,000,000,000
V2 (indiv tree hts, ft)	25 3-5 200
V3 (TREE>3M) (FT) 40 /	0 1 Sure full state
V4 LAYER CATEGORY (SELE	CT 1,2,3,4,5) <u>5 / 65 /</u>
SNAG (indv diam, in) V5, snag count >4"	10"+ 10"+
V6 ALL WOODY 1 1	10. 1
RFCT MODEL: V1(tree hts, see above)	
V2 RIPARIAN STAND WIDTH (all wo	ody + small gaps) 100 / 100 /
V3 TREE CANOPY CLOSURE 40	101 Beschert
V4 # SPECIES (list names) Rose Will	BZ 8wd
V5 UNDERSTORY DENSITY @2FT [@14FT <u>40 /10 /</u> AV	101001 @6FT 701601 20BW (mlh pl ERAGE 601601 6Hp
YW MODEL: VI DECID SHRUB COV	ER 90 1100 1 Jowith
V2 SHRUB HTS (ft) $1 - 1.5 \text{ m}$ (nearest .1M) $1 - 125 \text{ m}$	$\frac{1}{5-21} \frac{30^{\prime} \omega l^{\prime} R_{\rm H}}{3-9 \omega l^{\prime} - 1}$
V3 hydrophytic SHRUB COVER 40 (14 fall free 20 0 DW MODEL: V1 SNAG COUNT >6", s	<u>100</u> see above <u>3</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u>
V2 BASAL AREA (cruz-all or se	e HW, below)
HW MODEL: V1 SNAG COUNT >10", V2/V3 DbH overstory	see above 3 6 (Harreld, t'willing
	· · · · · · · · · · · · · · · · · · ·
V4 CANOPY COVER 30 /	

DATA SHEET TS_30_L HEP	P. <u>10</u>	
DATE 2/3/21 TIME 329 NAMES 400 M+	Sch, Sau 10 underpowerline	
TRANSECT TOTAL LENGTH (FT) 100 / 100 /	- 11	51
RSG MODEL: V1 (SHRUB<3M) (FT) 30 / 60 /	17.6 30	270
V2 (indiv tree hts, ft) 15-20 (~20-25)		11.2
V3 (TREE>3M) (FT) 70 1 -410 1	free.	
V4 LAYER CATEGORY (SELECT 1,2,3,4,5) 5 / 5	5 shale	
SNAG (indv diam, in) <u>6 Binderso hind</u>		
V6 ALL WOODY 100 1		
RFCT MODEL: V1(tree hts, see above)		
V2 RIPARIAN STAND WIDTH (all woody + small gaps)	100 1	
V3 TREE CANOPY CLOSURE 90+ 1 30% 1	11-21	
V4 # SPECIES (list names) (BB BW UND WITH Pa	Un line ONIO New top	
V5 UNDERSTORY DENSITY @2FT/00 / 100 / @6FT8 @14FT 70 / 50/	01801	
YW MODEL: VI DECID SHRUB COVER 100 1 100 1		
V2 SHRUB HTS (ft) $\underline{T_1} = 2\overline{M}$ (nearest .1M) $\underline{T_2} = 2\overline{20\%} 1.2 - 15\overline{66}; some fully, 14$	m 2m ang N 1.8	
V3 hydrophytic SHRUB COVER <u>100</u> <u>100</u> <u>100</u> Vy fall free <u>100</u> <u>DW MODEL</u> : V1 SNAG COUNT >6", see above <u>1</u>	Philos 196 197	.U. JS , 1300
V2 BASAL AREA (cruz-all or see HW, below)/_		3. 8 BY
HW MODEL: V1 SNAG COUNT >10", see above V2/V3 DbH overstory 15" [40]		(Ha
1		
V4 CANOPY COVER 15 1251		

DATA SHEET TS_30_L HEP P.
DATE 2/3/29 TIME 2:30pm NAMES Steve Schij Steer M, Savanh
PHOTO#193 WYPT PLOT#/LOCATION #9
TRANSECT TOTAL LENGTH (FT) 601501
RSG MODEL: V1 (SHRUB<3M) (FT) 60 / 9' / 193 210 275
V2 (indiv tree hts, ft) $25_{\sqrt{25}}$ 25
V3 ² (TREE>3M) (FT) / /
V4 LAYER CATEGORY (SELECT 1,2,3,4,5) 5 / /
(Note: Not Recorded - Noted obscured grand by the b block bury) SNAG (indv diam, in)
V6 ALL WOODY 60 1 50 1
RFCT MODEL: V1(tree hts, see above) ZSV
V2 RIPARIAN STAND WIDTH (all woody + small gaps) <u>60</u> / <u>50</u> /
V3 TREE CANOPY CLOSURE $\phi_{1,25}/$
V4 # SPECIES (list names) _ BW, RW, Burnh, Red Oaksedby
% V5 UNDERSTORY DENSITY @2FT/00/100/ @14FT_0_1901AVERAGE
YW MODEL: VI DECID SHRUB COVER 60 150 1
v2 SHRUB HTS (ft) 1 mostly 1, & M BB, Nothingelse (nearest .1M) T2 Willows 2+ M
V3 hydrophytic SHRUB COVER 60 1 50 1 Contact for the Cover for the
V2 BASAL AREA (cruz-all or see HW, below) the 1
HW MODEL: VI SNAG COUNT >10", see above MACANE V2/V3 DbH overstory ~8"(ash) (2010,0, 875mller)-BW
·
VA CANOPY COVER 0 125

DATA SHEET TS_30_L HEP	P. <u>8</u>
DATE 2/3/21 TIME 1:20pm NAMES Steve Sch	_
PHOTOH #100-102 WYPT #275 PLOT#/LOCATION #8 400	or to paulone
TRANSECT TOTAL LENGTH (FT) 100 / 100 /	2
$\frac{\text{RSG MODEL: V1 (SHRUB<3M) (FT)} 40 125 1}{\text{V2 (indiv tree hts, ft)} 200 + 21 307 204 25}$	1 122 BW W 20 25
V3 (TREE>3M) (FT) 60 1 75 1	
V4 LAYER CATEGORY (SELECT 1,2,3,4,5)	
SNAG (indv diam, in) $4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 $	
V6 ALL WOODY 85 1 100 1	100
RFCT MODEL: V1(tree hts, see above)	1. Tossame loc
V2 RIPARIAN STAND WIDTH (all woody + small gaps) $\frac{2}{2}$ / $\frac{p_{\ell}(e)}{2}$	
V3 TREE CANOPY CLOSURE 50 / 32/ 1	
V4 # SPECIES (list names) BW, Will Rod With 16 Blkberry Fig	
V5 UNDERSTORY DENSITY @2FT <u>第5 /100 /</u> @6FT <u>60 / 20 /</u> @14FT <u>55 / 90 /</u>	
YW MODEL: V1 DECID SHRUB COVER 85 / 100 /	Note: photomity pre
V2 SHRUB HTS (ft) 1.1 1.3 1.2 Rest 72m	70%>2m
(nearest.1M) T21.6-1. 8 shoub 6/8 Pest 2/2 -	
V3 hydrophytic SHRUB COVER 85 1100 1	
V2 BASAL AREA (cruz-all or see HW, below)	1753)
HW MODEL: VI SNAG COUNT >10", see above	
V4 CANOPY COVER 5D 1 25 1	

DATA SHEET TS_30_L HEI	p		Р	
DATE 2/2 TIME	NAMES St	MM, Sch, Sav.	1	111
PHOTO#	<u>end #26</u> PLOT#/LOC	ATION $\frac{\#7}{7}$		THA FIR
TRANSECT TOTAL LENGT	H (FT) 100 1100	1		-10 -10
RSG MODEL: V1 (SHRUB<	3M) (FT) 30 1- "	CERSTRO .	-	
V2 (indiv tree hts, ft)_	10, 10, 10	40, 30'	18-	
V3 (TREE>3M) (FT)_	70 1 60 1	- 30 - 50 - 51 /		
V4 LAYER CATEGO	RY (SELECT 1,2,3,4,5)) 44 5 ^{77,} 1		
SNAG (indv diam, in) V5, snag count >4"	<u>10 10 10</u> 6+	84 84	_6	
V6 ALL WOODY	90 1 90 1			
RFCT MODEL: V1(tree hts, s	see above)			
V2 RIPARIAN STAND WID	TH (all woody + small gap $\int_{0}^{100} \int_{0}^{100} \int_{0}^{10} \int_{0}^{100} \int_{0}^{100} \int_$	<u>901901</u>		
V3 TREE CANOPY CLOSU V4 # SPECIES (list names)	BW, UBB, Rod	(u)) uniow/ heroro 12	ls green	NYE D
V5 UNDERSTORY DENSIT @14FT	Y @2FT 00 / 80/ AVERAGE 80 6	@6FT 70 1501	Miscole, 170	3=55 Not 65
YW MODEL: V1 DECID SH	IRUB COVER 90 1	10 180		
V2 SHRUB HTS (ft) / 20 (nearest .1M)	% <u>BB 1.2-1.4, egna</u>	ider privilitaller 2	<u>+m</u>	
V3 hydrophytic SHRUB COV	VER 90 190 1 $0 720%UNT >6", see above 6+$	HB ⁴⁻⁶	10 ym for 1/2	esite ref
V2 BASAL AREA (c	ruz-all or see HW, below)	No est in i		
HW MODEL: V1 SNAG CO V2/V3 DbH overstory	UNT >10", see above $\underline{\mathcal{J}}$		<u></u> v	
V4 CANOPY COVER 60	130 /			

DATA SHEET TS_30_L HEP	P. <u>6</u>
DATE 12/3/21 TIME 1/02	NAMES Steve M. Stur El, Savamh
PHOTO# 184-186 WYPT Sent #25	PLOT#/LOCATION Plot 6 (before Piner lines.)
TRANSECT TOTAL LENGTH (FT) 100	1001
RSG MODEL: V1 (SHRUB<3M) (FT)	40 45 1 189 240 240
V2 (indiv tree hts, ft) 53 (unla	Dest ~ 5016willow 25-30 tillest by
V3 (TREE>3M) (FT)	551 treeshout
V4 LAYER CATEGORY (SELEC	T 1,2,3,4,5)
SNAG (indv diam, in) $-6-8''(n)$ V5, snag count >4"_/	good fellent two at myle
V6 ALL WOODY 70 / 9	0 /
RFCT MODEL: V1(tree hts, see above)	
V2 RIPARIAN STAND WIDTH (all wood	dy + small gaps) <u>85 / 9/) /</u>
V3 TREE CANOPY CLOSURE 5%	150%1
V4 # SPECIES (list names) Willow B	B, eld, silver!!
V5 UNDERSTORY DENSITY @2FT 100 @14FT 2D/55/AVE	RAGE 6 (5) (
YW MODEL: V1 DECID SHRUB COVE	R701901
V2 SHRUB HTS (ft) $\underline{\neg}_{1}$ $\underline{\neg}_{1}$ $\underline{\neg}_{1}$ $\underline{\neg}_{2}$ $\underline{\neg}_{1}$ $\underline{\neg}_{2}$ $$	150/BB2 50% - 2mt W.//
V3 hydrophytic SHRUB COVER 70 V9 Hilling - 30% -T2 only DW MODEL: V1 SNAG COUNT >6", se	e above 1 is the line in the for a googin three solution
V2 BASAL AREA (cruz-all or see	HW, below) / / / /
HW MODEL: VI SNAG COUNT >10", s	20" dense willows lighte Gilsgen TI
- Willaw 10	alfree ~ 6-25km: (6"4) [2)
V4 CANOPY COVER $0 130'$	/

DATA SHEET TS_30_L HEP	P. <u></u>
DATE 12/3 TIME 9:30 AN NAMES Store, Block	Salanah 181100
TRANSECT TOTAL LENGTH (FT) 700 / 100	7. 7.20
$\frac{\text{RSG MODEL: V1 (SHRUB<3M) (FT) 10 1 20 1}{B_{c}N_{rm}M_{s}/(m_{c})} = O_{cs} + 26-32' \\ \text{V2 (indiv tree hts, ft) } \frac{h_{c}h_{m}(\mu_{c})}{B_{c}N_{rm}M_{s}/(m_{c})} = \frac{154/(5100) + 56(5100)}{B_{c}N_{rm}} \\ \frac{h_{c}h_{m}(\mu_{c})}{B_{c}N_{rm}} = \frac{154/(5100) + 56(5100)}{B_{c}N_{rm}} \\ \text{V3 (TREE>3M) (FT) } \frac{80}{80} = \frac{180}{180} $	183 -> 210 274
V4 LAYER CATEGORY (SELECT 1,2,3,4,5)	<u>Į/</u>
by SNAG (indv diam, in) (1 perchable - cow't seem V5, snag count >4"	7 <u>2 </u>
V6 ALL WOODY 90 1 100 1	
RFCT MODEL: V1(tree hts, see above) ~ 30-35'	
V2 RIPARIAN STAND WIDTH (all woody + small gaps) <u> </u>	00 1
S N3 TREE CANOPY CLOSURE 80 180 1	
V4 # SPECIES (list names) botton, Red Wil, Sim Wil B.	
V5 UNDERSTORY DENSITY @2FT <u>90 /100/</u> @6FT <u>90</u> / @14FT <u>85/ 90/</u> AVERAGE <u>10/ 90</u> /	1801
YW MODEL: V1 DECID SHRUB COVER 90 100 1	
V2 SHRUB HTS (ft) $1_{1} - 20\% 1.9 - 80\% 211$ (nearest .1M) $1_{2} - 20\% 1.6 - 80\% 21$	m
V3 hydrophytic SHRUB COVER 90 100 1 V9 (Note- forget to Record est, 30% based on menound the of Jat <u>DW MODEL</u> : V1 SNAG COUNT >6", see above est to	ml photos 18/00/182) intruiting tence
Leta V2 BASAL AREA (cruz-all or see HW, below)	- Thely high.
HW MODEL: VI SNAG COUNT >10", see above V2/V3 DbH overstory bitowill (4, 4, 6) .c.F Some with larger -look in (1)	orps rioted
V4 CANOPY COVER 60 / 170 /	

	DATA SHEET TS_30_L HEP P
	DATE 12/2 TIME 3:30 NAMES Steve, Jess/Sav PHOTO# WYPT 23-5 PLOT#/LOCATION #4
	TRANSECT TOTAL LENGTH (FT) 100 1 100 1
	RSG MODEL: V1 (SHRUB<3M) (FT) 50 190 1 100 1 100
	V3 (TREE>3M) (FT) 20 1 70 1 Marshall with Shares .
	V4 LAYER CATEGORY (SELECT 1,2,3,4,5) 51/51/
	SNAG (indv diam, in) $5'' - 6'' - 6'' - 5+'' $
	V6 ALL WOODY 70, 90,
	RFCT MODEL: V1(tree hts, see above)
	V2 RIPARIAN STAND WIDTH (all woody + small gaps) 100 / 90 /
	V3 TREE CANOPY CLOSURE 20 1 70 1 V4 # SPECIES (list names) BB, WHEN, BHW, Welet, Sime
	V5 UNDERSTORY DENSITY @2FT 79 90 @6FT 39 80 / @14FT 20 60 AVERAGE HD / 50 /
	YW MODEL: VI DECID SHRUB COVER 50 / 90 /
	v2 SHRUB HTS (ft) <u>1</u> - Pridun <u>BS 16 M</u> (nearest .1M) <u>7</u> predom Willow 2+M
	V3 hydrophytic SHRUB COVER 50, 90 /
	DW MODEL: VI SNAG COUNT >6", see above I haly high
*	V2 BASAL AREA (cruz-all or see HW, below)
	HW MODEL: V1 SNAG COUNT >10", see above O V2/V3 DbH overstory 30" 7" 4" 6" 6"
	۲۰ <u>۵</u> <u>۲۰</u> <u>۵</u> <u>۱۵</u>
	V4 CANOPY COVER 20 1 50 1 non-mature dumance?

.

DATA SHEET TS 30 L HEP DATE NAMES Jessica/Samon TIME /10 pm 21-50 PLOT#/LOCATION 77 3 WYPT 22-New PHOTO# the TRANSECT TOTAL LENGTH (FT) RSG MODEL: V1 (SHRUB<3M) (FT) V2 (indiv tree hts, ft) 20 V3 (TREE>3M) (FT) 80 8 V4 LAYER CATEGORY (SELECT 1,2,3,4,5) 1justucker 4 SNAG (indv diam, in) 6 V5, snag count >4" V6 ALL WOODY 120 RFCT MODEL: V1(tree hts, see above) V2 RIPARIAN STAND WIDTH (all woody + small gaps) 120 V3 TREE CANOPY CLOSURE 8 V4 # SPECIES (list names) Willow, BB, @6FT 60/60/ V5 UNDERSTORY DENSITY @2FT 3 0/ 00/ AVERAGESD / @14FT 40 28 YW MODEL: VI DECID SHRUB COVER 60 100 V2 SHRUB HTS (ft) (nearest .1M) V3 hydrophytic SHRUB COVER 70 4 follerthan 30) 50%/ DE Butnerby walnut 10% DW MODEL: V1 SNAG COUNT >6", see above verydensel 11 V2 BASAL AREA (cruz-all or see HW, below) HW MODEL: VI SNAG COUNT >10", see above_ V2/V3 DbH overstory 201 26 la ponnative dum alst but NOT >50

DATA SHEET TS_30_L HEP

P. 2

1	PHOTOH 72-174 WYPT \$5#20 PLOTHIOCATION #26rs out twends bis naraky
1	"Inoton unit
1	TRANSECT TOTAL LENGTH (FT) 100 1 100 1 _ E estimated 100 from
	RSG MODEL: V1 (SHRUB<3M) (FT) 77 / 82 / 129
	V2 (indiv tree hts, ft) 1000 16-20 + 12 55 172 173
	V ² /(TREE>3M) (FT) <u>77 / 82 /</u>
	V4 LAYER CATEGORY (SELECT 1,2,3,4,5) 5 / 5 /
	SNAG (indv diam, in) $b'' 10'' 10''$
	V5, snag count >4"3
89	V6 ALL WOODY 17 1 82 1
3	RFCT MODEL: V1(tree hts, see above)
	V2 RIPARIAN STAND WIDTH (all woody + small gaps) 77 192 1
3	V3 TREE CANOPY CLOSURE 20 1 (tree 5-3)
13	V4 # SPECIES (list names) BB) Will ow with with
22 23	V5 UNDERSTORY DENSITY @2FT 7 1821 @6FT 771821 (included average averag
Č,	YW MODEL: V1 DECID SHRUB COVER 77 / 82 /
	(nearest .1M)
	V3 hydrophytic SHRUB COVER 77 182 1 (Vy - fall free) - B DW MODEL: VI SNAG COUNT -6", see above 3
	V2 BASAL AREA (cruz-all or see HW, below)
	<u>HW MODEL:</u> V1 SNAG COUNT >10", see above 2 2.50 - 18, 16 V2/V3 DbH overstory $T_1 - 7$
	20% (26m)

DATA SHEET TS_30_L HEP P
DATE 2/2/2/ TIME NAMES OF SQUEENEN
PHOTO#104 - WYPT # 4 -5 ind PLOT#/LOCATION 1 St Plat 4 ingle over
TRANSECT TOTAL LENGTH (FT) 6511001
RSG MODEL: V1 (SHRUB<3M) (FT)
V2 (indiv tree hts, ft) 14' 50' 20' 22' other willows
V\$ (TREE>3M) (FT) 12 170 1
V4 LAYER CATEGORY (SELECT 1,2,3,4,5)//
SNAG (indv diam, in) _// estructure
V6 ALL WOODY 18 17.9' 1
RFCT MODEL: V1(tree hts, see above)
V2 RIPARIAN STAND WIDTH (all woody + small gaps) 20 / 20
V3 TREE CANOPY CLOSURE 0 / 20 /
V4 # SPECIES (list names) BB Jash / Will, unkyth 100 (4)
V5 UNDERSTORY DENSITY @2FT 30/80 / @6FT 15 / 60 / @14FT 0 / 20 / AVERAGE 15 / 55 /
YW MODEL: V1 DECID SHRUB COVER 8 / 79 /
V2 SHRUB HTS (ft) 2+ 0.9 1.2 (numerous Willows 2m) (nearest .1M) average 2+
V3 hydrophytic SHRUB COVER 18 / 79 /
DW MODEL: VI SNAG COUNT >6", see above 1
V2 BASAL AREA (cruz-all or see HW, below)
HW MODEL: V1 SNAG COUNT >10", see above 1 V2/V3 DbH overstory 9 10 10 6 10 6
127 125 1
WE CANOPY COVER 10 1 25 1
willowsest 22 tell

APPENDIX D. Plates

Plate 1: TS_30_L impact area; 3-41 are plot boundary waypoints (see Appendix C, datasheets).

Plate 2. Adjacent Corridor mitigation option for TS_30_L (Elmwood parcel in figure above).

Plate 3: Location of non-adjacent mitigation options for TS_30_L.